English
Karnataka Board PUCPUC Science Class 11

A stone is thrown vertically upward with a speed of 28 m/s.Find its velocity one second before it reaches the maximum height. - Physics

Advertisements
Advertisements

Question

A stone is thrown vertically upward with a speed of 28 m/s.Find its velocity one second before it reaches the maximum height.

Short Note

Solution

Given:
Initial velocity with which the stone is thrown vertically upwards, u = 28 m/s
When the stone reaches the ground, its final velocity (v) is 0.
Also,
a = g = −9.8 m/s2  (Acceleration due to gravity)

Total time taken by the stone to reach the maximum height:

\[t = \frac{\left( v - u \right)}{a}\]

\[\Rightarrow t = \frac{\left( 0 - 28 \right)}{- 9 . 8} = 2 . 85 s\]

As per the question, we need to find the velocity of the stone one second before it reaches the maximum height.
t' = 2.85 − 1 = 1.85 s
Again, using the equation of motion, we get: 
v' = u + at' = 28 − 9.8 × 1.85
⇒ v' = 28 − 18.13 = 9.87 m/s 
Hence, the velocity is 9.87 m/s

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Rest and Motion: Kinematics - Exercise [Page 52]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 3 Rest and Motion: Kinematics
Exercise | Q 25.2 | Page 52

RELATED QUESTIONS

Complete the following table:

Car Model Driver X
Reaction time 0.20 s
Driver Y
Reaction time 0.30 s
A (deceleration on hard braking = 6.0 m/s2) Speed = 54 km/h
Braking distance
a = ............
Total stopping distance
b = ............
Speed = 72 km/h
Braking distance
= ...........
Total stopping distance
d = ............
B (deceleration on hard braking = 7.5 m/s2) Speed = 54 km/h
Breaking distance
e = ...........
Total stopping distance
f = ............
Speed 72 km/h
Braking distance
g = .............
Total stopping distance
h = ............

 


A police jeep is chasing a culprit going on a motorbike. The motorbike crosses a turning at a speed of 72 km/h. The jeep follows it at a speed of 90 km/h, crossing the turning ten seconds later than the bike. Assuming that they travel at constant speeds, how far from the turning will the jeep catch up with the bike?

 

A ball is projected vertically upward with a speed of 50 m/s. Find the speed at half the maximum height. Take g = 10 m/s2


A stone is thrown vertically upward with a speed of 28 m/s. change if the initial speed is more than 28 m/s such as 40 m/s or 80 m/s ?


A healthy youngman standing at a distance of 7 m from a 11.8 m high building sees a kid slipping from the top floor. With what speed (assumed uniform) should he run to catch the kid at the arms height (1.8 m)?


A ball is thrown horizontally from a point 100 m above the ground with a speed of 20 m/s. Find the horizontal distance it travels before reaching the ground .


A ball is thrown horizontally from a point 100 m above the ground with a speed of 20 m/s. Find the velocity (direction and magnitude) with which it strikes the ground. 


A ball is thrown at a speed of 40 m/s at an angle of 60° with the horizontal. Find the maximum height reached  .


A ball is thrown at a speed of 40 m/s at an angle of 60° with the horizontal. Find   the range of the ball. Take g = 10 m/s2


A ball is projected from a point on the floor with a speed of 15 m/s at an angle of 60° with the horizontal. Will it hit a vertical wall 5 m away from the point of projection and perpendicular to the plane of projection without hitting the floor? Will the answer differ if the wall is 22 m away? 


Find the average velocity of a projectile between the instants it crosses half the maximum height. It is projected with a speed u at an angle θ with the horizontal.

 

The benches of a gallery in a cricket stadium are 1 m wide and 1 m high. A batsman strikes the ball at a level one metre above the ground and hits a mammoth sixer. The ball starts at 35 m/s at an angle of 53° with the horizontal. The benches are perpendicular to the plane of motion and the first bench is 110 m from the batsman. On which bench will the ball hit?


A swimmer wishes to cross a 500 m wide river flowing at 5 km/h. His speed with respect to water is 3 km/h.  Find the shortest possible time to cross the river.


Consider the situation of the previous problem. The man has to reach the other shore at the point directly opposite to his starting point. If he reaches the other shore somewhere else, he has to walk down to this point. Find the minimum distance that he has to walk. 


An aeroplane has to go from a point A to another point B, 500 km away due 30° east of north. A wind is blowing due north at a speed of 20 m/s. The air-speed of the plane is 150 m/s. Find the time taken by the plane to go from A to B.


Two friends A and B are standing a distance x apart in an open field and wind is blowing from A to B. A beat a drum and B hears the sound t1 time after he sees the event. A and B interchange their positions and the experiment is repeated. This time B hears the drum timer after he sees the event. Calculate the velocity of sound in still air v and the velocity of wind u. Neglect the time light takes in travelling between the friends. 

 

A ball is dropped from a building of height 45 m. Simultaneously another ball is thrown up with a speed 40 m/s. Calculate the relative speed of the balls as a function of time.


It is a common observation that rain clouds can be at about a kilometre altitude above the ground.

  1. If a rain drop falls from such a height freely under gravity, what will be its speed? Also calculate in km/h. ( g = 10 m/s2)
  2. A typical rain drop is about 4mm diameter. Momentum is mass x speed in magnitude. Estimate its momentum when it hits ground.
  3. Estimate the time required to flatten the drop.
  4. Rate of change of momentum is force. Estimate how much force such a drop would exert on you.
  5. Estimate the order of magnitude force on umbrella. Typical lateral separation between two rain drops is 5 cm.

(Assume that umbrella is circular and has a diameter of 1 m and cloth is not pierced through !!)


A man is standing on top of a building 100 m high. He throws two balls vertically, one at t = 0 and other after a time interval (less than 2 seconds). The later ball is thrown at a velocity of half the first. The vertical gap between first and second ball is +15 m at t = 2 s. The gap is found to remain constant. Calculate the velocity with which the balls were thrown and the exact time interval between their throw.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×