मराठी

आलेखीय विधि से ज्ञात कीजिए कि निम्नलिखित समीकरण युग्म संगत हैं या नहीं। यदि संगत हैं, तो इन्हें हल कीजिए। x – 2y = 6, 3x – 6y = 0 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

आलेखीय विधि से ज्ञात कीजिए कि निम्नलिखित समीकरण युग्म संगत हैं या नहीं। यदि संगत हैं, तो इन्हें हल कीजिए।

x – 2y = 6, 3x – 6y = 0

बेरीज

उत्तर

दिया गया समीकरण युग्म है। 

x – 2y = 6 ......(i)

और 3x – 6y = 0   ......(ii)

ax + by + c = 0 से तुलना करने पर, हम पाते हैं। 

a1 = 1, b1 = –2 और c1 = –6   .....[(i) से]

a2 = 3, b2 = –6 और c2 = 0  ......[(ii) से]

यहाँ, `a_1/a_2 = 1/3`,

`b_1/b_2 = (-2)/(-6) = 1/3`

और `c_1/c_2 = (-6)/0`

∴ `a_1/a_2 = b_1/b_2 ≠ c_1/c_2`

इसलिए, दिए गए समीकरणों द्वारा दर्शाई गई रेखाएँ समांतर हैं।

इसलिए इसका कोई समाधान नहीं है।

अत:, रेखाओं का दिया गया युग्म असंगत है।

shaalaa.com
रैखिक समीकरण युग्म का ग्राफीय विधि से हल
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: दो चरों वाले रैखिक समीकरणों का युग्म - प्रश्नावली 3.3 [पृष्ठ २९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 3 दो चरों वाले रैखिक समीकरणों का युग्म
प्रश्नावली 3.3 | Q 11. (ii) | पृष्ठ २९

संबंधित प्रश्‍न

निम्न समस्या में रैखिक समीकरण के युग्म बनाइए और उसके ग्राफीय विधि से हल ज्ञात कीजिए।

कक्षा X के 10 विद्यार्थियों ने एक गणित की पहेली प्रतियोगिता में भाग लिया। यदि लड़कियों की संख्या लड़कों की संख्या से 4 अधिक हो, तो प्रतियोगिता में भाग लिए लड़कों और लड़कियों की संख्या ज्ञात कीजिए।


अनुपातों `bb(a_1/a_2, b_1/b_2)` और `bb(c_1/c_2)` की तुलना कर ज्ञात कीजिए कि निम्न रैखिक समीकरण के युग्म संगत हैं या असंगत:

`3/2x + 5/3y = 7`;  9x - 10y = 14


निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।

x - y = 8, 3x - 3y = 16


निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।

2x + y - 6 = 0, 4x - 2y - 4 = 0


निम्न रैखिक समीकरणों के युग्मों में से कौन से युग्म संगत/असंगत हैं, यदि संगत हैं तो ग्राफीय विधि से हल ज्ञात कीजिए।

2x - 2y - 2 = 0, 4x - 4y - 5 = 0


समीकरण λx + 3y = –7, 2x + 6y = 14 के युग्म के अपरिमित रूप से अनेक हल होने के लिए, λ का मान 1 होना चाहिए। क्या यह कथन सत्य है? कारण दीजिए।


a और b के किन मानों के लिए, निम्नलिखित रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?

x + 2y = 1

(a – b)x + (a + b)y = a + b – 2


निम्नलिखित समीकरण-युग्म को आलेखीय रूप से हल कीजिए:

2x + y = 6, 2x – y + 2 = 0

उन दो त्रिभुजों के क्षेत्रफलों का अनुपात ज्ञात कीजिए, जो इन समीकरणों को निरूपित करने वाली रेखाओं द्वारा क्रमश: x-अक्ष और y-अक्ष द्वारा बनाए जाते हैं।


समीकरण x = 3, x = 5 और 2x – y – 4 = 0 के आलेख खींचिए। इन रेखाओं और x-अक्ष द्वारा बनाए गए चतुर्भुज का क्षेत्रफल ज्ञात कीजिए। 


λ के किस (किन) मान (मानों) के लिए रैखिक समीकरण-युग्म 

λx + y = λ2 

x + λy = 1

दो चरों वाले रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×