मराठी

ΔAbc is an Isosceles Triangle with Ab = Ac. Gb and Hc Are Perpendiculars Drawn on Bc.Prove that (I) Bg = Ch (Ii) Ag = Ah - Mathematics

Advertisements
Advertisements

प्रश्न

ΔABC is an isosceles triangle with AB = AC. GB and HC ARE perpendiculars drawn on BC.

Prove that 
(i) BG = CH
(ii) AG = AH

बेरीज

उत्तर

In ΔABC
AB = AC
∠ABC = ∠ACB  ...(equal sides have equal angles opposite to them)...(i)
∠GBC = ∠HCB = 90°   ........(ii)
Subtracting (i) from (ii)
∠GBA = ∠HCA..........(iii)
In ΔGBA and ΔHCA
∠GBA = ∠HCA  ...(from iii)
∠BAG - ∠CAH   ...(vertically opposite angles)
BC = BC
Therefore, ΔGBA ≅ ΔHCA  ...(ASA criteria)
Hence, BG = CH and AG = AH.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Triangles and their congruency - Exercise 11.2

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 11 Triangles and their congruency
Exercise 11.2 | Q 28
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×