मराठी

Abc is a Triangle in Which Be and Cf Are, Respectively, the Perpendiculars to the Sides Ac And Ab. If Be = Cf, Prove that δAbc is Isosceles - Mathematics

Advertisements
Advertisements

प्रश्न

ABC is a triangle in which BE and CF are, respectively, the perpendiculars to the sides AC and AB. If BE = CF, prove that ΔABC is isosceles  

उत्तर

Given that ABC is a triangle in which BE and CF are perpendicular to the sides AC and AB respectively such that BE = CF   

We have to prove that ΔABC is isosceles
Now, consider ΔBCF and ΔCBE, 

We have 

∠BFC=CEB=90°                 [Given] 

BC=CB                             [Common side] 

And CF=BE                        [Given]  

So, by RHS congruence criterion, we have ΔBFC≅CEB 

Now, 

∠FBC=∠EBC   [∵ Incongruent triangles corresponding parts                                                   are equal] 

⇒ ∠ABC=∠ACB 

⇒ AC=AB    [ ∵Opposite sides to equal angles are equal in a                                triangle]

∴ ΔABC is isosceles 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Congruent Triangles - Exercise 12.5 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 12 Congruent Triangles
Exercise 12.5 | Q 2 | पृष्ठ ६१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×