मराठी

ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and EA = ED. Prove that  EB = EC. - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and EA = ED. Prove that  EB = EC

टीपा लिहा

उत्तर

 EB = EC

 Since, AD and BC are parallel to each other, so,

\[\angle ECB = \angle EDA \left( \text{ Corresponding angles }  \right)\]
\[\angle EBC = \angle EAD \left( \text{ Corresponding angles}  \right)\]
\[\text{ But } , \angle EDA = \angle EAD\]
\[\text{ Therefore } , \angle ECB = \angle EBC\]
\[ \Rightarrow EC = EB\]
\[ \text{ Therefore, }  \bigtriangleup \text{ ECB is an isosceles triangle }  .\]

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Circles - Exercise 15.5 [पृष्ठ १०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 15 Circles
Exercise 15.5 | Q 26.2 | पृष्ठ १०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×