Advertisements
Advertisements
प्रश्न
If P, Q and R are the mid-points of the sides BC, CA and AB of a triangle and AD is the perpendicular from A on BC, prove that P, Q, R and D are concyclic.
उत्तर
Given: In ΔABC, P, Q and R are the mid-points of the sides BC, CA and AB respectively. Also, AD ⊥ BC.
To prove: P, Q, R and D are concyclic.
Construction: Join DR, RQ and QP
Proof: In right-angled ΔADP, R is the mid-point of AB.
∴ RB = RD
⇒ ∠2 = ∠1 ...(i) [Angles opposite to the equal sides are equal]
Since, R and Q are the mid-points of AB and AC, then
RQ || BC ...[By mid-point theorem]
or RQ || BP
Since, QP || RB, then quadrilateral BPQR is a parallelogram.
⇒ ∠1 = ∠3 ...(ii) [Opposite angles of parallelogram are equal]
From equations (i) and (ii),
∠2 = ∠3
But ∠2 + ∠4 = 180° ...[Linear pair axiom]
∴ ∠3 + ∠4 = 180° ...[∴ ∠2 = ∠3]
Hence, quadrilateral PQRD is a cyclic quadrilateral.
So, points P, Q, R and D are non-cyclic.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see the given figure). Prove that ∠ACP = ∠QCD.
If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.
Two chords AB and CD of lengths 5 cm 11cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.
In the figure, `square`ABCD is a cyclic quadrilateral. Seg AB is a diameter. If ∠ ADC = 120˚, complete the following activity to find measure of ∠ BAC.
`square` ABCD is a cyclic quadrilateral.
∴ ∠ ADC + ∠ ABC = 180°
∴ 120˚ + ∠ ABC = 180°
∴ ∠ ABC = ______
But ∠ ACB = ______ .......(angle in semicircle)
In Δ ABC,
∠ BAC + ∠ ACB + ∠ ABC = 180°
∴ ∠BAC + ______ = 180°
∴ ∠ BAC = ______
Circles are described on the sides of a triangle as diameters. Prove that the circles on any two sides intersect each other on the third side (or third side produced).
In the given figure, ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If ∠DBC = 55° and ∠BAC = 45°, find ∠BCD.
In the given figure, ABCD is a quadrilateral inscribed in a circle with centre O. CD is produced to E such that ∠AED = 95° and ∠OBA = 30°. Find ∠OAC.
ABCD is a cyclic quadrilateral such that ∠ADB = 30° and ∠DCA = 80°, then ∠DAB =
Find all the angles of the given cyclic quadrilateral ABCD in the figure.
If a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are also equal.