हिंदी

ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and EA = ED. Prove that  EB = EC. - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and EA = ED. Prove that  EB = EC

टिप्पणी लिखिए

उत्तर

 EB = EC

 Since, AD and BC are parallel to each other, so,

\[\angle ECB = \angle EDA \left( \text{ Corresponding angles }  \right)\]
\[\angle EBC = \angle EAD \left( \text{ Corresponding angles}  \right)\]
\[\text{ But } , \angle EDA = \angle EAD\]
\[\text{ Therefore } , \angle ECB = \angle EBC\]
\[ \Rightarrow EC = EB\]
\[ \text{ Therefore, }  \bigtriangleup \text{ ECB is an isosceles triangle }  .\]

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Circles - Exercise 15.5 [पृष्ठ १०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 15 Circles
Exercise 15.5 | Q 26.2 | पृष्ठ १०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.


ABC and ADC are two right triangles with common hypotenuse AC. Prove that ∠CAD = ∠CBD.


Prove that a cyclic parallelogram is a rectangle.


Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that ∠ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.


In the figure, `square`ABCD is a cyclic quadrilateral. Seg AB is a diameter. If ∠ ADC = 120˚, complete the following activity to find measure of ∠ BAC.

`square` ABCD is a cyclic quadrilateral.
∴ ∠ ADC + ∠ ABC = 180°
∴ 120˚ + ∠ ABC = 180°
∴ ∠ ABC = ______
But ∠ ACB = ______  .......(angle in semicircle)

In Δ ABC,
∠ BAC + ∠ ACB + ∠ ABC = 180°
∴ ∠BAC + ______ = 180°
∴ ∠ BAC = ______


In the given figure, ∠BAD = 78°, ∠DCF = x° and ∠DEF = y°. Find the values of x and y


ABCD is a cyclic quadrilateral in   ∠BCD = 100° and ∠ABD = 70° find ∠ADB.


Circles are described on the sides of a triangle as diameters. Prove that the circles on any two sides intersect each other on the third side (or third side produced).


In the given figure, ABCD is a cyclic quadrilateral in which ∠BAD = 75°, ∠ABD = 58° and ∠ADC = 77°, AC and BD intersect at P. Then, find ∠DPC.


In a cyclic quadrilaterals ABCD, ∠A = 4x, ∠C = 2x the value of x is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×