हिंदी

ABC and ADC are two right triangles with common hypotenuse AC. Prove that ∠CAD = ∠CBD. - Mathematics

Advertisements
Advertisements

प्रश्न

ABC and ADC are two right triangles with common hypotenuse AC. Prove that ∠CAD = ∠CBD.

योग

उत्तर

In ΔABC,

∠ABC + ∠BCA + ∠CAB = 180°  ...(Angle sum property of a triangle)

⇒ 90° + ∠BCA + ∠CAB = 180°

⇒ ∠BCA + ∠CAB = 90°    ...(1)

In ΔADC,

∠CDA + ∠ACD + ∠DAC = 180°   ...(Angle sum property of a triangle)

⇒ 90° + ∠ACD + ∠DAC = 180°

⇒ ∠ACD + ∠DAC = 90°   ...(2)

Adding equations (1) and (2), we obtain

∠BCA + ∠CAB + ∠ACD + ∠DAC = 180°

⇒ (∠BCA + ∠ACD) + (∠CAB + ∠DAC) = 180°

∠BCD + ∠DAB = 180°     ...(3)

However, it is given that

∠B + ∠D = 90° + 90° = 180°    ...(4)

From equations (3) and (4), it can be observed that the sum of the measures of opposite angles of quadrilateral ABCD is 180°. Therefore, it is a cyclic quadrilateral.

Consider chord CD.

∠CAD = ∠CBD   ...(Angles in the same segment)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Circles - Exercise 10.5 [पृष्ठ १८६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 10 Circles
Exercise 10.5 | Q 11 | पृष्ठ १८६

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×