हिंदी

In the following figure, AOB is a diameter of the circle and C, D, E are any three points on the semi-circle. Find the value of ∠ACD + ∠BED. - Mathematics

Advertisements
Advertisements

प्रश्न

In the following figure, AOB is a diameter of the circle and C, D, E are any three points on the semi-circle. Find the value of ∠ACD + ∠BED.

योग

उत्तर

Since, A, C, D and E are four point on a circle, then ACDE is a cyclic quadrilateral.

∠ACD + ∠AED = 180°  ...(i)  [Sum of opposite angles in a cyclic quadrilateral is 180°]

Now, ∠AEB = 90°  ...(ii)

We know that, diameter subtends a right angle to the circle.

On adding equations (i) and (ii), we get

(∠ACD + ∠AED) + ∠AEB = 180° + 90° = 270°

⇒ ∠ACD + ∠BED = 270°

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Circles - Exercise 10.3 [पृष्ठ १०४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
अध्याय 10 Circles
Exercise 10.3 | Q 19. | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×