हिंदी

Abcd Is a Cyclic Quadrilateral in Which Ba And Cd When Produced Meet In E And Ea = Ed. Prove that Ad || Bc . - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and EA = ED. Prove that AD || BC . 

टिप्पणी लिखिए

उत्तर

 If ABCD is a cyclic quadrilateral in which AB and CD when produced meet in E such that EA =  ED, then we have to prove the following, AD || BC 

It is given that EA = ED, so 

\[\angle EAD = \angle EDA = x\]

Since, ABCD is cyclic quadrilateral

`x + angleABC = 180 ⇒ angleDAB = 180 - x`

And ; ` x + angleBCD = 180 ⇒ angle BCD = 180- x `

Now,

`angle DAB + angle ABC = x + 180 - x = 180`

Therefore, the adjacent angles `angleDAB ` and `angleABC`  are supplementary

Hence, AD || BC

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Circles - Exercise 15.5 [पृष्ठ १०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 15 Circles
Exercise 15.5 | Q 26.1 | पृष्ठ १०३

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×