English

Abcd Is a Cyclic Quadrilateral in Which Ba And Cd When Produced Meet In E And Ea = Ed. Prove that Ad || Bc . - Mathematics

Advertisements
Advertisements

Question

ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and EA = ED. Prove that AD || BC . 

Short Note

Solution

 If ABCD is a cyclic quadrilateral in which AB and CD when produced meet in E such that EA =  ED, then we have to prove the following, AD || BC 

It is given that EA = ED, so 

\[\angle EAD = \angle EDA = x\]

Since, ABCD is cyclic quadrilateral

`x + angleABC = 180 ⇒ angleDAB = 180 - x`

And ; ` x + angleBCD = 180 ⇒ angle BCD = 180- x `

Now,

`angle DAB + angle ABC = x + 180 - x = 180`

Therefore, the adjacent angles `angleDAB ` and `angleABC`  are supplementary

Hence, AD || BC

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Circles - Exercise 15.5 [Page 103]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 15 Circles
Exercise 15.5 | Q 26.1 | Page 103

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×