Advertisements
Advertisements
Question
In the given figure, ABCD is a cyclic quadrilateral in which ∠BAD = 75°, ∠ABD = 58° and ∠ADC = 77°, AC and BD intersect at P. Then, find ∠DPC.
Solution
In a cyclic quadrilateral it is known that the opposite angles are supplementary, meaning that the opposite angles add up to 180° .
Here we have a cyclic quadrilateral ABCD. The centre of this circle is given as ‘O’.
Since in a cyclic quadrilateral the opposite angles are supplementary, here
`angleADC + angleABD + angle CBD ` = 180°
`angleCBD = 180° - angleADC - angleABD `
= 180° - 77° - 58°
`angle CBD ` = 45°
Whenever a chord is drawn in a circle two segments are formed. One is called the minor segment while the other is called the major segment. The angle that the chord forms with any point on the circumference of a particular segment is always the same.
Here, ‘CD’ is a chord and ‘A’ and ‘B’ are two points along the circumference on the major segment formed by the chord ‘CD’.
So, `angleCBD = angleCAD ` = 45°
Now,
`angleBAD = angleBAC + angleCAD `
`angleBAC = angleBAD - angleCAD`
= 75° - 45°
`angleBAC` = 30°
In any triangle the sum of the interior angles need to be equal to 180°.
Consider the triangle ΔABP,
\[\angle PAB + \angle ABP + \angle APB = 180°\]
\[ \Rightarrow \angle APB = 180°- 30°- 58°\]
\[ \Rightarrow \angle APB = 92°\]
From the figure, since ‘AC’ and ‘BD’ intersect at ‘P’ we have,
`angle APB = angleDPC ` = 92°
Hence the measure of `angleDPC ` is92° .
APPEARS IN
RELATED QUESTIONS
Prove that "Opposite angles of a cyclic quadrilateral are supplementary".
A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If ∠DBC = 70°, ∠BAC is 30°, find ∠BCD. Further, if AB = BC, find ∠ECD.
If the non-parallel sides of a trapezium are equal, prove that it is cyclic.
Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are `90^@-1/2A, 90^@-1/2B" and "90^@-1/2C`
In a cyclic quadrilateral ABCD, if ∠A − ∠C = 60°, prove that the smaller of two is 60°
Prove that the perpendicular bisectors of the sides of a cyclic quadrilateral are concurrent.
PQRS is a cyclic quadrilateral such that PR is a diameter of the circle. If ∠QPR = 67° and ∠SPR = 72°, then ∠QRS =
If non-parallel sides of a trapezium are equal, prove that it is cyclic.
ABCD is a parallelogram. A circle through A, B is so drawn that it intersects AD at P and BC at Q. Prove that P, Q, C and D are concyclic.