English

ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If ∠DBC = 70°, ∠BAC is 30°, find ∠BCD. Further, if AB = BC, find ∠ECD. - Mathematics

Advertisements
Advertisements

Question

ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If ∠DBC = 70°, ∠BAC is 30°, find ∠BCD. Further, if AB = BC, find ∠ECD.

Sum

Solution

For chord CD,

∠CBD = ∠CAD    ...(Angles in the same segment)

∠CAD = 70°

∠BAD = ∠BAC + ∠CAD = 30° + 70° = 100°

∠BCD + ∠BAD = 180°   ...(Opposite angles of a cyclic quadrilateral)

∠BCD + 100° = 180°

∠BCD = 80°

In ΔABC,

AB = BC      ...(Given)

∴ ∠BCA = ∠CAB   ...(Angles opposite to equal sides of a triangle)

⇒ ∠BCA = 30°

We have, ∠BCD = 80°

⇒ ∠BCA + ∠ACD = 80°

30° + ∠ACD = 80°

⇒ ∠ACD = 50°

⇒ ∠ECD = 50°

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Circles - Exercise 10.5 [Page 185]

APPEARS IN

NCERT Mathematics [English] Class 9
Chapter 10 Circles
Exercise 10.5 | Q 6 | Page 185

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×