Advertisements
Advertisements
प्रश्न
In the given figure, ABCD is a cyclic quadrilateral in which ∠BAD = 75°, ∠ABD = 58° and ∠ADC = 77°, AC and BD intersect at P. Then, find ∠DPC.
उत्तर
In a cyclic quadrilateral it is known that the opposite angles are supplementary, meaning that the opposite angles add up to 180° .
Here we have a cyclic quadrilateral ABCD. The centre of this circle is given as ‘O’.
Since in a cyclic quadrilateral the opposite angles are supplementary, here
`angleADC + angleABD + angle CBD ` = 180°
`angleCBD = 180° - angleADC - angleABD `
= 180° - 77° - 58°
`angle CBD ` = 45°
Whenever a chord is drawn in a circle two segments are formed. One is called the minor segment while the other is called the major segment. The angle that the chord forms with any point on the circumference of a particular segment is always the same.
Here, ‘CD’ is a chord and ‘A’ and ‘B’ are two points along the circumference on the major segment formed by the chord ‘CD’.
So, `angleCBD = angleCAD ` = 45°
Now,
`angleBAD = angleBAC + angleCAD `
`angleBAC = angleBAD - angleCAD`
= 75° - 45°
`angleBAC` = 30°
In any triangle the sum of the interior angles need to be equal to 180°.
Consider the triangle ΔABP,
\[\angle PAB + \angle ABP + \angle APB = 180°\]
\[ \Rightarrow \angle APB = 180°- 30°- 58°\]
\[ \Rightarrow \angle APB = 92°\]
From the figure, since ‘AC’ and ‘BD’ intersect at ‘P’ we have,
`angle APB = angleDPC ` = 92°
Hence the measure of `angleDPC ` is92° .
APPEARS IN
संबंधित प्रश्न
Prove that a cyclic parallelogram is a rectangle.
Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are `90^@-1/2A, 90^@-1/2B" and "90^@-1/2C`
ABCD is a cyclic quadrilateral in ∠BCD = 100° and ∠ABD = 70° find ∠ADB.
ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and EA = ED. Prove that AD || BC .
In the given figure, ABCD is a quadrilateral inscribed in a circle with centre O. CD is produced to E such that ∠AED = 95° and ∠OBA = 30°. Find ∠OAC.
ABCD is a cyclic quadrilateral. M (arc ABC) = 230°. Find ∠ABC, ∠CDA, and ∠CBE.
In a cyclic quadrilaterals ABCD, ∠A = 4x, ∠C = 2x the value of x is
If a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are also equal.
ABCD is a parallelogram. A circle through A, B is so drawn that it intersects AD at P and BC at Q. Prove that P, Q, C and D are concyclic.
The three angles of a quadrilateral are 100°, 60°, 70°. Find the fourth angle.