Advertisements
Advertisements
प्रश्न
In the given figure, ABCD is a quadrilateral inscribed in a circle with centre O. CD is produced to E such that ∠AED = 95° and ∠OBA = 30°. Find ∠OAC.
उत्तर
£ADE = 95°(Given) Since,
OA = OB, so
∠OAB = ∠OBA
∠OAB = 30°
∠ADE + ∠ADC = 180°
(Linear pair)
95° + ∠ADC = 180°
∠ADC = 85°
We know that,
∠ADC = 2∠ADC
∠ADC = 2 x 85°
∠ADC = 170°
Since,
AO = OC
(Radii of circle)
∠OAC = ∠OCA
(Sides opposite to equal angle) ... (i)
In triangle OAC,
∠OAC + ∠OCA + ∠AOC = 180°
∠OAC + ∠OAC + 170° = 180°
[From (i)]
2∠OAC = 10°
∠OAC = 5°
Thus,
∠OAC = 5°
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠PQR = 100°, where P, Q and R are points on a circle with centre O. Find ∠OPR.
Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see the given figure). Prove that ∠ACP = ∠QCD.
Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.
ABCD is a cyclic quadrilateral in BC || AD, ∠ADC = 110° and ∠BAC = 50°. Find ∠DAC.
Circles are described on the sides of a triangle as diameters. Prove that the circles on any two sides intersect each other on the third side (or third side produced).
In the given figure, ABCD is a cyclic quadrilateral in which ∠BAD = 75°, ∠ABD = 58° and ∠ADC = 77°, AC and BD intersect at P. Then, find ∠DPC.
PQRS is a cyclic quadrilateral such that PR is a diameter of the circle. If ∠QPR = 67° and ∠SPR = 72°, then ∠QRS =
In a cyclic quadrilaterals ABCD, ∠A = 4x, ∠C = 2x the value of x is
In the figure, ▢ABCD is a cyclic quadrilateral. If m(arc ABC) = 230°, then find ∠ABC, ∠CDA, ∠CBE.
If a line is drawn parallel to the base of an isosceles triangle to intersect its equal sides, prove that the quadrilateral so formed is cyclic.