हिंदी

In the figure, ▢ABCD is a cyclic quadrilateral. If m(arc ABC) = 230°, then find ∠ABC, ∠CDA, ∠CBE. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In the figure, ▢ABCD is a cyclic quadrilateral. If m(arc ABC) = 230°, then find ∠ABC, ∠CDA, ∠CBE.

योग

उत्तर

m(arc ABC) = 230°   .....(i) [Given]

∴ m(arc ADC) + m(arc ABC) = 360°   .......[Degree measure of a circle is 360°]

∴ m(arc ADC) = 360° – m(arc ABC)

∴ m(arc ADC) = 360° – 230°   .......[From (i)]

∴ m(arc ADC) = 130°

∠ABC = `1/2` m (arc ADC)   ......[Inscribed angle theorem]

= `1/2 xx 130^circ`

= 65°

Now, ∠CDA = `1/2` m (arc ABC)   ......[Inscribed angle theorem]

∴ ∠CDA = `1/2 xx 230^circ`

∴ ∠CDA = 115°    ......(ii)

∠CBE = ∠CDA    ......(iiii) [The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle]

∴ ∠CBE = 115°     .....[From (ii) and (iii)]

∴ ∠ABC = 65°, ∠CDA = 115°, ∠CBE = 115°.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Circle - Q.7

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that "Opposite angles of a cyclic quadrilateral are supplementary".


ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If ∠DBC = 70°, ∠BAC is 30°, find ∠BCD. Further, if AB = BC, find ∠ECD.


Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that ∠ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.


The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?


In the figure m(arc LN) = 110°,
m(arc PQ) = 50° then complete the following activity to find ∠LMN.
∠ LMN = `1/2` [m(arc LN) - _______]
∴ ∠ LMN = `1/2` [_________ - 50°]
∴ ∠ LMN = `1/2` ×  _________
∴ ∠ LMN = __________


In the given figure, ∠BAD = 78°, ∠DCF = x° and ∠DEF = y°. Find the values of x and y


In the given figure, ABCD is a cyclic quadrilateral. Find the value of x.

 


ABCD is a cyclic quadrilateral in  BC || AD, ∠ADC = 110° and ∠BAC = 50°. Find ∠DAC.


ABCD is a cyclic quadrilateral in  ∠DBC = 80° and ∠BAC = 40°. Find ∠BCD.


Prove that the centre of the circle circumscribing the cyclic rectangle ABCD is the point of intersection of its diagonals.


ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and EA = ED. Prove that AD || BC . 


ABCD is a cyclic quadrilateral in which BA and CD when produced meet in E and EA = ED. Prove that  EB = EC


In the given figure, ABCD is a quadrilateral inscribed in a circle with centre O. CD is produced to E such that ∠AED = 95° and ∠OBA = 30°. Find ∠OAC.


PQRS is a cyclic quadrilateral such that PR is a diameter of the circle. If ∠QPR = 67° and ∠SPR = 72°, then ∠QRS =


ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and ∠ADC = 140º, then ∠BAC is equal to ______.


If a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are also equal.


ABCD is a parallelogram. A circle through A, B is so drawn that it intersects AD at P and BC at Q. Prove that P, Q, C and D are concyclic.


If bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at the points P and Q, prove that PQ is a diameter of the circle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×