हिंदी

The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre? - Mathematics

Advertisements
Advertisements

प्रश्न

The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?

उत्तर

Let AB and CD be two parallel chords in a circle centered at O. Join OB and OD.

Distance of smaller chord AB from the centre of the circle = 4 cm

OM = 4 cm

MB = AB/2 = 6/2 = 3cm

In ΔOMB,

OM2 + MB2 = OB2

(4)2 + (3)2 = OB2

16 + 9 = OB2

OB2 = 25

`OB = sqrt25`

OB = 5cm

In ΔOND,

OD = OB = 5cm                   (Radii of the same circle)

ND = CD/2 = 8/2 = 4cm

ON2 + ND2 = OD2

ON2 + (4)2 = (5)2

ON2 = 25 - 16 = 9

ON = 3

Therefore, the distance of the bigger chord from the centre is 3 cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Circles - Exercise 10.6 [पृष्ठ १८७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 10 Circles
Exercise 10.6 | Q 3 | पृष्ठ १८७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.


ABC and ADC are two right triangles with common hypotenuse AC. Prove that ∠CAD = ∠CBD.


ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that AE = AD.


In the figure, `square`ABCD is a cyclic quadrilateral. Seg AB is a diameter. If ∠ ADC = 120˚, complete the following activity to find measure of ∠ BAC.

`square` ABCD is a cyclic quadrilateral.
∴ ∠ ADC + ∠ ABC = 180°
∴ 120˚ + ∠ ABC = 180°
∴ ∠ ABC = ______
But ∠ ACB = ______  .......(angle in semicircle)

In Δ ABC,
∠ BAC + ∠ ACB + ∠ ABC = 180°
∴ ∠BAC + ______ = 180°
∴ ∠ BAC = ______


In a cyclic quadrilateral ABCD, if ∠A − ∠C = 60°, prove that the smaller of two is 60°

 

 

ABCD is a cyclic quadrilateral in   ∠BCD = 100° and ∠ABD = 70° find ∠ADB.


In the given figure, ABCD is a cyclic quadrilateral in which ∠BAD = 75°, ∠ABD = 58° and ∠ADC = 77°, AC and BD intersect at P. Then, find ∠DPC.


ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and ∠ADC = 140º, then ∠BAC is equal to ______.


ABCD is a cyclic quadrilateral such that ∠A = 90°, ∠B = 70°, ∠C = 95° and ∠D = 105°.


If P, Q and R are the mid-points of the sides BC, CA and AB of a triangle and AD is the perpendicular from A on BC, prove that P, Q, R and D are concyclic.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×