हिंदी

If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle. - Mathematics

Advertisements
Advertisements

प्रश्न

If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

योग

उत्तर

Let ABCD be a cyclic quadrilateral having diagonals BD and AC, intersecting each other at point O.

∠BAD = `1/2angleBOD`

= `180^@/2`

= 90°           ...(Consider BD as a chord)

∠BCD + ∠BAD = 180°         ...(Cyclic quadrilateral)

∠BCD = 180° − 90° = 90°

∠ADC = `1/2angleAOC`

= `1/2(180^@)`

= 90°       ...(Considering AC as a chord)

∠ADC + ∠ABC = 180°  ...(Cyclic quadrilateral)

90° + ∠ABC = 180°

∠ABC = 90°

Each interior angle of a cyclic quadrilateral is of 90°. Hence, it is a rectangle.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Circles - Exercise 10.5 [पृष्ठ १८५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
अध्याय 10 Circles
Exercise 10.5 | Q 7 | पृष्ठ १८५

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×