Advertisements
Advertisements
प्रश्न
ऐसी दो धन संख्याएँ x और y ज्ञात कीजिए ताकि x + y = 60 और xy3 उच्चतम हो।
उत्तर
दिया है,
x + y = 60
x = 60 - y …(1)
माना xy3 = P …(2)
समीकरण (1) से x का मान समीकरण (2) में रखने पर,
(60 - y) y3 = P ⇒ P = 60y3 - y4
दोनों पक्षों का y के सापेक्ष अवकलन करने पर,
`(dP)/dy = 0`
⇒ 180y2 - 4y3 = 0
⇒ 4y2 (45 - y) = 0
⇒ y = 45 ...(∵ 0 < y < 60) ....(3)
उच्चतम व निम्नतम मान के लिए, `(dP)/dy = 0`
= 4y2 (45 - y) = 0
`=> y = 45, y ne 0`
समीकरण (3) का पुन: y के सापेक्ष अवकलन पर,
`(d^2P)/(dy^2)` = 360 y - 12y2 = 12 y(30 - y)
y = 45 रखने पर,
इसके अलावा, `(d^2P)/dy^2 = 360y - 12y^2 और`
`((d^2P)/dy^2)_(y = 45) = 360 xx 45 - 12 xx (45)^2 < 0`
इसलिए, जब y = 45 हो तो P अधिकतम होगा
∴ आवश्यक संख्याएँ x = 60 - y = 60 - 45 = 15 और y = 45 हैं।
APPEARS IN
संबंधित प्रश्न
अंतराल [1, 3] में 2x3 - 24x + 107 का महत्तम मान ज्ञात कीजिए। इसी फलन का अंतराल [-3, -1] में भी महत्तम मान ज्ञात कीजिए।
निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
f(x) = (2x - 1)2 + 3
निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
f(x) = 9x2 + 12x + 2
निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
f(x) = -(x - 1)2 + 10
निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
g(x) = x3 + 1
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:
g(x) = - |x + 1| + 3
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए:
f(x) = |sin 4x + 3|
सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:
f(x) = ex
सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:
h(x) = x3 + x2 + x + 1
प्रदत्त अंतराल में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।
f(x) = 4x `- 1/2 x^2, x in [-2, 9/2]`
अंतराल [0, 2π] के किन बिंदुओं पर फलन sin 2 x अपना उच्चतम मान प्राप्त करता है।
फलन sin x + cos x का उच्चतम मान क्या है?
सिद्ध कीजिए कि दिए हुए पृष्ठ और महत्त्म आयतन वाले लंब वृत्तीय शंकु का अर्ध शीर्ष कोण `sin^-1 (1/3)` होता है।
वक्र x2 = 2y पर (0, 5) से न्यूनतम दूरी पर स्थित बिंदु है:
x के सभी वास्तविक मानों के लिए `(1 - x + x^2)/(1 + x = x^2)` का न्यूनतम मान है:
ऐसी दो संख्याएँ ज्ञात कीजिए जिनका योग 24 है और जिनका गुणनफल उच्चतम हो।
45 cm × 24 cm की टिन की आयताकार चादर के चारों कोनों से समान भुजा का एक वर्गाकार निकालने के पश्चात् खुला हुआ एक संदूक बनाया जाता है। वर्गों की भुजा की माप ज्ञात कीजिये जिसके काटने पर बने संदूक का आयतन महत्तम होगा।
100 सेमी3 आयतन वाले डिब्बे सभी बंद बेलनाकार (लंब वृत्तीय) डिब्बों में से न्यूनतम पृष्ठ क्षेत्रफल वाले डिब्बे की विमाएँ ज्ञात कीजिए।
एक 28 cm लंबे तार को दो टुकड़ों में विभक्त किया जाना है। एक टुकड़े से वर्ग तथा दूसरे से वृत्त बनाया जाना है। दोनों टुकड़ों की लंबाई कितनी होनी चाहिए जिससे वर्ग एवं वृत्त का सम्मिलित क्षेत्रफल न्यूनतम हो?
सिद्ध कीजिए कि R त्रिज्या के गोले के अन्तर्गत विशालतम शंकु का आयतन गोले के आयतन का `8/27` होता है।
सिद्ध कीजिए कि दी हुई तिर्यक ऊँचाई और महत्तम आयतन वाले शंकु का अर्थ शीर्ष कोण tan-1 `sqrt2` होता है।
आयताकार आधार व आयताकार दीवारों की 2 m गहरी और 8 m3 आयतन की एक बिना ढक्कन की टंकी का निर्माण करना है। यदि टंकी के निर्माण में आधार के लिए Rs. 70/m2 और दीवारों पर Rs. 45/m2 व्यय आता है तो निम्नतम खर्च से बनी टंकी की लागत क्या है?
एक वृत्त और एक वर्ग के परिमापों का योग k है, जहाँ k एक अचर है। सिद्ध कीजिए कि उनके क्षेत्रफलों का योग निम्नतम है, जब वर्ग की भुजा वृत्त की त्रिज्या की दुगुनी है।
f (x) = cos2 x + sin x, x ϵ [0, π] द्वारा प्रदत्त फलन f का निरपेक्ष उच्चतम और निम्नतम मान ज्ञात कीजिए।
वक्र x = t2 + 3t – 8, y = 2t2 – 2t -5 के बिन्दु (2, -1) पर स्पर्श रेखा की प्रवणता है-