मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Areas of two similar triangles are in the ratio 144: 49. Find the ratio of their corresponding sides. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Areas of two similar triangles are in the ratio 144: 49. Find the ratio of their corresponding sides.

बेरीज

उत्तर

Let the areas of two similar triangles be A1, A2 and their corresponding sides be S1, S2 respectively.

∴ `"A"_1/"A"_2 = 144/49`    ...(i)[Given]

∴ by the theorem of areas of similar triangles,

∴ `"A"_1/"A"_2 = "S"_1^2/"S"_2^2`

∴ `144/49 = "S"_1^2/"S"_2^2`    ...[From (i)]

∴ by taking square root of both sides,

∴ `"S"_1/"S"_2 = 12/7` 

∴ The ratio of the corresponding sides of the given triangles is 12: 7.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Similarity - Q.1 (B)

संबंधित प्रश्‍न

In the following figure seg AB ⊥ seg BC, seg DC ⊥ seg BC. If AB = 2 and DC = 3, find `(A(triangleABC))/(A(triangleDCB))`


The ratio of the areas of two triangles with common base is 6:5. Height of the larger triangle of 9 cm, then find the corresponding height of the smaller triangle.


In the given figure, AD is the bisector of the exterior ∠A of ∆ABC. Seg AD intersects the side BC produced in D. Prove that :

\[\frac{BD}{CD} = \frac{AB}{AC}\]

Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.


 In trapezium PQRS, side PQ || side SR, AR = 5AP, AS = 5AQ then prove that, SR = 5PQ 

 

 


In trapezium ABCD, side AB || side DC, diagonals AC and BD intersect in point O. If AB = 20, DC = 6, OB = 15 then Find OD. 


In the given figure, ∠ABC = ∠DCB = 90° AB = 6, DC = 8 then `("A(Δ ABC)")/("A(Δ DCB)")` = ?


In the figure, PM = 10 cm, A(∆PQS) = 100 sq.cm, A(∆QRS) = 110 sq. cm, then find NR.


The ratio of the areas of two triangles with the common base is 4 : 3. Height of the larger triangle is 2 cm, then find the corresponding height of the smaller triangle.


In ∆ABC, B – D – C and BD = 7, BC = 20, then find the following ratio.

`(A(∆ABD))/(A(∆ABC))`


In ∆ABC, B – D – C and BD = 7, BC = 20 then Find following ratio. 

\[\frac{A\left( ∆ ADC \right)}{A\left( ∆ ABC \right)}\] 


A roller of diameter 0.9 m and the length 1.8 m is used to press the ground. Find the area of the ground pressed by it in 500 revolutions.
`(pi=3.14)`


In fig., TP = 10 cm, PS = 6 cm. `"A(ΔRTP)"/"A(ΔRPS)"` = ?


In fig., AB ⊥ BC and DC ⊥ BC, AB = 6, DC = 4 then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


From adjoining figure, ∠ABC = 90°, ∠DCB = 90°, AB = 6, DC = 8, then `("A"(Δ"ABC"))/("A"(Δ"BCD"))` = ?


If ΔABC ∼ ΔDEF, length of side AB is 9 cm and length of side DE is 12 cm, then find the ratio of their corresponding areas.


In the figure, PQ ⊥ BC, AD ⊥ BC. To find the ratio of A(ΔPQB) and A(ΔPBC), complete the following activity.


Given: PQ ⊥ BC, AD ⊥ BC

Now, A(ΔPQB)  = `1/2 xx square xx square`

A(ΔPBC)  = `1/2 xx square xx square`

Therefore, 

`(A(ΔPQB))/(A(ΔPBC)) = (1/2 xx square xx square)/(1/2 xx square xx square)`

= `square/square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×