Advertisements
Advertisements
प्रश्न
D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that AE2 + BD2 = AB2 + DE2
उत्तर
Applying Pythagoras theorem in ΔACE, we obtain
AC2 + CE2 = AE2 ....(i)
Applying Pythagoras theorem in ΔBCD, we get
BC2 + CD2 = BD2 ....(ii)
Using equations (i) and (ii), we get
AC2 + CE2 + BC2 + CD2 = AE2 + BD2 ...(iii)
Applying Pythagoras theorem in ΔCDE, we get
DE2 = CD2 + CE2
Applying Pythagoras theorem in ΔABC, we get
AB2 = AC2 + CB2
Putting these values in equation (iii), we get
DE2 + AB2 = AE2 + BD2.
APPEARS IN
संबंधित प्रश्न
In a right triangle ABC right-angled at C, P and Q are the points on the sides CA and CB respectively, which divide these sides in the ratio 2 : 1. Prove that
`(i) 9 AQ^2 = 9 AC^2 + 4 BC^2`
`(ii) 9 BP^2 = 9 BC^2 + 4 AC^2`
`(iii) 9 (AQ^2 + BP^2 ) = 13 AB^2`
PQR is a triangle right angled at P. If PQ = 10 cm and PR = 24 cm, find QR.
The perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0) is
(A)\[7 + \sqrt{5}\]
(B) 5
(C) 10
(D) 12
Identify, with reason, if the following is a Pythagorean triplet.
(4, 9, 12)
In the given figure, ∠DFE = 90°, FG ⊥ ED, If GD = 8, FG = 12, find (1) EG (2) FD and (3) EF
The given figure shows a quadrilateral ABCD in which AD = 13 cm, DC = 12 cm, BC = 3 cm and ∠ABD = ∠BCD = 90o. Calculate the length of AB.
Find the value of (sin2 33 + sin2 57°)
In the figure below, find the value of 'x'.
Two poles of height 9m and 14m stand on a plane ground. If the distance between their 12m, find the distance between their tops.
AD is perpendicular to the side BC of an equilateral ΔABC. Prove that 4AD2 = 3AB2.