मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

Describe schematically the equipotential surfaces corresponding to (a) a constant electric field in the z-direction, (b) a field that uniformly increases in magnitude but remains in a constant - Physics

Advertisements
Advertisements

प्रश्न

Describe schematically the equipotential surfaces corresponding to

(a) a constant electric field in the z-direction,

(b) a field that uniformly increases in magnitude but remains in a constant (say, z) direction,

(c) a single positive charge at the origin, and

(d) a uniform grid consisting of long equally spaced parallel charged wires in a plane.

थोडक्यात उत्तर

उत्तर

(a) Equidistant planes parallel to the x-y plane are the equipotential surfaces.

(b) Planes parallel to the x-y plane are the equipotential surfaces with the exception that when the planes get closer, the field increases.

(c) Concentric spheres centered at the origin are equipotential surfaces.

(d) A periodically varying shape near the given grid is the equipotential surface. This shape gradually reaches the shape of planes parallel to the grid at a larger distance.

shaalaa.com
Equipotential Surfaces
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Electrostatic Potential and Capacitance - Exercise [पृष्ठ ९१]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
पाठ 2 Electrostatic Potential and Capacitance
Exercise | Q 2.34 | पृष्ठ ९१
एनसीईआरटी Physics [English] Class 12
पाठ 2 Electrostatic Potential and Capacitance
Exercise | Q 34 | पृष्ठ ९१

संबंधित प्रश्‍न

A regular hexagon of side 10 cm has a charge 5 µC at each of its vertices. Calculate the potential at the centre of the hexagon.


The top of the atmosphere is at about 400 kV with respect to the surface of the earth, corresponding to an electric field that decreases with altitude. Near the surface of the earth, the field is about 100 Vm−1. Why then do we not get an electric shock as we step out of our house into the open? (Assume the house to be a steel cage so there is no field inside!)


The discharging current in the atmosphere due to the small conductivity of air is known to be 1800 A on an average over the globe. Why then does the atmosphere not discharge itself completely in due course and become electrically neutral? In other words, what keeps the atmosphere charged?


What is the geometrical shape of equipotential surfaces due to a single isolated charge?


Why is there no work done in moving a charge from one point to another on an equipotential surface?


Depict the equipotential surfaces for a system of two identical positive point charges placed a distance(d) apart?


Define equipotential surface. 


Draw the equipotential surfaces due to an electric dipole.


Depict the equipotential surface due to
(i) an electric dipole,
(ii) two identical positive charges separated by a distance.


Statement - 1: For practical purpose, the earth is used as a reference at zero potential in electrical circuits.

Statement - 2: The electrical potential of a sphere of radius R with charge Q uniformly distributed on the surface is given by `Q/(4piepsilon_0R)`.


S1 and S2 are the two imaginary surfaces enclosing the charges +q and -q as shown. The electric flux through S1 and S2 are respectively ______.


Equipotentials at a great distance from a collection of charges whose total sum is not zero are approximately.


The diagrams below show regions of equipotentials.

(i)
(ii)
(iii)
(iv)

A positive charge is moved from A to B in each diagram.


A unit charge moves on an equipotential surface from a point A to point B, then ______.

Can two equipotential surfaces intersect each other? 


Equipotential surfaces ______.

  1. are closer in regions of large electric fields compared to regions of lower electric fields.
  2. will be more crowded near sharp edges of a conductor.
  3. will be more crowded near regions of large charge densities.
  4. will always be equally spaced.

The work done to move a charge along an equipotential from A to B ______.

  1. cannot be defined as `- int_A^B E.dl`
  2. must be defined as `- int_A^B E.dl`
  3. is zero.
  4. can have a non-zero value.

Draw equipotential surfaces for (i) an electric dipole and (ii) two identical positive charges placed near each other.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×