मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

If → a × → B = 0 Can You Say that (A) → a = → B , (B) → a ≠ → B - Physics

Advertisements
Advertisements

प्रश्न

If \[\vec{A} \times \vec{B} = 0\] can you say that

(a) \[\vec{A} = \vec{B} ,\]

(b) \[\vec{A} \neq \vec{B}\] ?

थोडक्यात उत्तर

उत्तर

If  \[\vec{A} \times \vec{B} = 0\], then both the vectors are either parallel or antiparallel, i.e., the angle between the vectors is either \[0^\circ \text { or } 180^\circ\].

\[\vec{A} \vec{ B } \sin\ \theta \ \hat { n } = 0.......\left(\because \sin0^\circ= \sin180^\circ = 0\right)\]

Both the conditions can be satisfied:

(a) \[\vec{A} = \vec{B} ,\] i.e., the two vectors are equal in magnitude and parallel to each other

(b) \[\vec{A} ≠ \vec{B} ,\]  i.e., the two vectors are unequal in magnitude and parallel or anti parallel to each other.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Physics and Mathematics - Short Answers [पृष्ठ २८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 2 Physics and Mathematics
Short Answers | Q 13 | पृष्ठ २८

संबंधित प्रश्‍न

Suggest a way to measure the thickness of a sheet of paper.


A physical quantity is measured and the result is expressed as nu where u is the unit used and n is the numerical value. If the result is expressed in various units then 


\[\int\frac{dx}{\sqrt{2ax - x^2}} = a^n \sin^{- 1} \left[ \frac{x}{a} - 1 \right]\] 
The value of n is


Find the dimensions of linear momentum . 


Find the dimensions of
(a) angular speed ω,
(b) angular acceleration α,
(c) torque τ and
(d) moment of interia I.
Some of the equations involving these quantities are \[\omega = \frac{\theta_2 - \theta_1}{t_2 - t_1}, \alpha = \frac{\omega_2 - \omega_1}{t_2 - t_1}, \tau = F . r \text{ and }I = m r^2\].
The symbols have standard meanings.


Find the dimensions of electric field E. 

The relevant equations are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]
where F is force, q is charge, v is speed, I is current, and a is distance.


Find the dimensions of the coefficient of linear expansion α and


Test if the following equation is dimensionally correct:
\[v = \sqrt{\frac{P}{\rho}},\]

where v = velocity, ρ = density, P = pressure


Is a vector necessarily changed if it is rotated through an angle?


Is it possible to add two vectors of unequal magnitudes and get zero? Is it possible to add three vectors of equal magnitudes and get zero?


Is the vector sum of the unit vectors  \[\vec{i}\] and \[\vec{i}\] a unit vector? If no, can you multiply this sum by a scalar number to get a unit vector?

 


The radius of a circle is stated as 2.12 cm. Its area should be written as


A carrom board (4 ft × 4 ft square) has the queen at the centre. The queen, hit by the striker moves to the from edge, rebounds and goes in the hole behind the striking line. Find the magnitude of displacement of the queen (a) from the centre to the front edge, (b) from the front edge to the hole and (c) from the centre to the hole.


Let A1 A2 A3 A4 A5 A6 A1 be a regular hexagon. Write the x-components of the vectors represented by the six sides taken in order. Use the fact the resultant of these six vectors is zero, to prove that
cos 0 + cos π/3 + cos 2π/3 + cos 3π/3 + cos 4π/3 + cos 5π/3 = 0.
Use the known cosine values to verify the result.


If \[\vec{A} , \vec{B} , \vec{C}\] are mutually perpendicular, show that  \[\vec{C} \times \left( \vec{A} \times \vec{B} \right) = 0\] Is the converse true?


Draw a graph from the following data. Draw tangents at x = 2, 4, 6 and 8. Find the slopes of these tangents. Verify that the curve draw is y = 2x2 and the slope of tangent is \[\tan \theta = \frac{dy}{dx} = 4x\] 
\[\begin{array}x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ y & 2 & 8 & 18 & 32 & 50 & 72 & 98 & 128 & 162 & 200\end{array}\]


The changes in a function y and the independent variable x are related as 
\[\frac{dy}{dx} = x^2\] . Find y as a function of x.


Round the following numbers to 2 significant digits.
(a) 3472, (b) 84.16. (c)2.55 and (d) 28.5


Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is measured to be 35.72˝. Calculate the diameter of Jupiter.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×