मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A carrom board (4 ft × 4 ft square) has the queen at the centre. The queen, hit by the striker moves to the from edge, rebounds and goes in the hole behind the striking line. Find the magnitude of - Physics

Advertisements
Advertisements

प्रश्न

A carrom board (4 ft × 4 ft square) has the queen at the centre. The queen, hit by the striker moves to the from edge, rebounds and goes in the hole behind the striking line. Find the magnitude of displacement of the queen (a) from the centre to the front edge, (b) from the front edge to the hole and (c) from the centre to the hole.

संख्यात्मक

उत्तर

Consider that the queen is initially at point A as shown in the figure.
Let AB be x ft.
So, DE = (2  \[-\] x) ft
In ∆ABC, we have: \[\tan \theta = \frac{x}{2}\] ...(i)
Also, in ∆DCE, we have:

\[\tan \theta = \frac{\left( 2 - x \right)}{4}\] ...(ii)
From (i) and (ii), we get: 

\[\frac{x}{2} = \frac{\left( 2 - x \right)}{4}\]

\[ \Rightarrow 2\left( 2 - x \right) = 4x\]

\[ \Rightarrow 4 - 2x = 4x\]

\[ \Rightarrow 6x = 4\]

\[ \Rightarrow x = \frac{2}{3}\text { ft }\]

(a) In ∆ABC, we have:

\[AC = \sqrt{{AB}^2 + {BC}^2}\]

\[= \sqrt{\left( \frac{2}{3} \right)^2 + 2^2}\]

\[ = \sqrt{\frac{4}{9} + 4} = \sqrt{\frac{40}{9}}\]

\[ = \frac{2}{3}\sqrt{10} \text { ft }\]

(b) In ∆CDE, we have:
DE \[= 2 - \frac{2}{3} = \frac{6 - 2}{3} = \frac{4}{3} \text { ft }\]

CD = 4 ft 

\[\therefore CE = \sqrt{{CD}^2 + {DE}^2}\]

\[ = \sqrt{4^2 + \left( \frac{4}{3} \right)^2}\]

\[ = \frac{4}{3}\sqrt{10} \text { ft }\]

(c) In ∆AGE, we have:

\[AE = \sqrt{{AG}^2 + {GE}^2}\]

\[= \sqrt{2^2 + 2^2}\]

\[\sqrt{8} = 2\sqrt{2}\text { ft }\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Physics and Mathematics - Exercise [पृष्ठ २९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 2 Physics and Mathematics
Exercise | Q 8 | पृष्ठ २९

संबंधित प्रश्‍न

Some of the most profound statements on the nature of science have come from Albert Einstein, one of the greatest scientists of all time. What do you think did Einstein mean when he said : “The most incomprehensible thing about the world is that it is comprehensible”?


“Every great physical theory starts as a heresy and ends as a dogma”. Give some examples from the history of science of the validity of this incisive remark


A physical quantity is measured and the result is expressed as nu where u is the unit used and n is the numerical value. If the result is expressed in various units then 


Suppose a quantity x can be dimensionally represented in terms of M, L and T, that is, `[ x ] = M^a L^b T^c`.  The quantity mass


Choose the correct statements(s):
(a) All quantities may be represented dimensionally in terms of the base quantities.
(b) A base quantity cannot be represented dimensionally in terms of the rest of the base quantities.
(c) The dimensions of a base quantity in other base quantities is always zero.
(d) The dimension of a derived quantity is never zero in any base quantity.


Find the dimensions of magnetic field B.
The relevant equation are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]

where F is force, q is charge, v is speed, I is current, and a is distance.


Find the dimensions of Planck's constant h from the equation E = hv where E is the energy and v is the frequency.


The height of mercury column in a barometer in a Calcutta laboratory was recorded to be 75 cm. Calculate this pressure in SI and CGS units using the following data : Specific gravity of mercury = \[13 \cdot 6\] , Density of \[\text{ water} = {10}^3 kg/ m^3 , g = 9 \cdot 8 m/ s^2\] at Calcutta. Pressure
= hpg in usual symbols.


Test if the following equation is dimensionally correct:
\[v = \frac{1}{2 \pi}\sqrt{\frac{mgl}{I}};\] 
where h = height, S = surface tension, \[\rho\] = density, P = pressure, V = volume, \[\eta =\] coefficient of viscosity, v = frequency and I = moment of interia.


Let x and a stand for distance. Is
\[\int\frac{dx}{\sqrt{a^2 - x^2}} = \frac{1}{a} \sin^{- 1} \frac{a}{x}\] dimensionally correct?


Let ε1 and ε2 be the angles made by  \[\vec{A}\] and -\[\vec{A}\] with the positive X-axis. Show that tan ε1 = tan ε2. Thus, giving tan ε does not uniquely determine the direction of \[\vec{A}\].

  

If \[\vec{A} \times \vec{B} = 0\] can you say that

(a) \[\vec{A} = \vec{B} ,\]

(b) \[\vec{A} \neq \vec{B}\] ?


The resultant of  \[\vec{A} \text { and } \vec{B}\] makes an angle α with  \[\vec{A}\] and β with \[\vec{B}\],


The component of a vector is 


A situation may be described by using different sets coordinate axes having different orientation. Which the following do not depended on the orientation of the axis?
(a) the value of a scalar
(b) component of a vector
(c) a vector
(d) the magnitude of a vector.


Let \[\vec{C} = \vec{A} + \vec{B}\]


A mosquito net over a 7 ft × 4 ft bed is 3 ft high. The net has a hole at one corner of the bed through which a mosquito enters the net. It flies and sits at the diagonally opposite upper corner of the net. (a) Find the magnitude of the displacement of the mosquito. (b) Taking the hole as the origin, the length of the bed as the X-axis, it width as the Y axis, and vertically up as the Z-axis, write the components of the displacement vector.


Give an example for which \[\vec{A} \cdot \vec{B} = \vec{C} \cdot \vec{B} \text{ but } \vec{A} \neq \vec{C}\].


High speed moving particles are studied under


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×