मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Spy Report About a Suspected Car Reads as Follows. "The Car Moved 2.00 Km Towards East, Made a Perpendicular Left Turn, Ran for 500 M, Made a Perpendicular Right Turn, Ran for 4.00 Km and Stopped". - Physics

Advertisements
Advertisements

प्रश्न

A spy report about a suspected car reads as follows. "The car moved 2.00 km towards east, made a perpendicular left turn, ran for 500 m, made a perpendicular right turn, ran for 4.00 km and stopped". Find the displacement of the car.

थोडक्यात उत्तर
व्युत्पत्ती

उत्तर

The displacement of the car is represented by  \[\overrightarrow{AD}\]. 

\[\overrightarrow{AD} = 2 \hat {i}+ 0 . 5 \hat {j} + 4 \hat {i} \]

\[ = 6 \hat {i} + 0 . 5 \hat {j}\]

Magnitude of \[\overrightarrow{AD}\] is given by

\[AD = \sqrt{{AE}^2 + {DE}^2}\]

\[ = \sqrt{6^2 + \left( 0 . 5 \right)^2}\]

\[ = \sqrt{36 + 0 . 25} = 6 . 02 km\]

Now,

\[\tan \theta = \frac{DE}{AE} = \frac{1}{12}\]

\[\Rightarrow \theta = \tan^{- 1} \left( \frac{1}{12} \right)\]

Hence, the displacement of the car is 6.02 km along the direction \[\tan^{- 1} \left( \frac{1}{12} \right)\]  with positive the x-axis.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Physics and Mathematics - Exercise [पृष्ठ २९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 2 Physics and Mathematics
Exercise | Q 7 | पृष्ठ २९

संबंधित प्रश्‍न

Some of the most profound statements on the nature of science have come from Albert Einstein, one of the greatest scientists of all time. What do you think did Einstein mean when he said : “The most incomprehensible thing about the world is that it is comprehensible”?


“Politics is the art of the possible”. Similarly, “Science is the art of the soluble”. Explain this beautiful aphorism on the nature and practice of science.


It is desirable that the standards of units be easily available, invariable, indestructible and easily reproducible. If we use foot of a person as a standard unit of length, which of the above features are present and which are not?


\[\int\frac{dx}{\sqrt{2ax - x^2}} = a^n \sin^{- 1} \left[ \frac{x}{a} - 1 \right]\] 
The value of n is


Choose the correct statements(s):


Find the dimensions of pressure.


Find the dimensions of
(a) angular speed ω,
(b) angular acceleration α,
(c) torque τ and
(d) moment of interia I.
Some of the equations involving these quantities are \[\omega = \frac{\theta_2 - \theta_1}{t_2 - t_1}, \alpha = \frac{\omega_2 - \omega_1}{t_2 - t_1}, \tau = F . r \text{ and }I = m r^2\].
The symbols have standard meanings.


Find the dimensions of electric field E. 

The relevant equations are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]
where F is force, q is charge, v is speed, I is current, and a is distance.


Find the dimensions of magnetic field B.
The relevant equation are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]

where F is force, q is charge, v is speed, I is current, and a is distance.


Find the dimensions of Planck's constant h from the equation E = hv where E is the energy and v is the frequency.


Let I = current through a conductor, R = its resistance and V = potential difference across its ends. According to Ohm's law, product of two of these quantities equals the third. Obtain Ohm's law from dimensional analysis. Dimensional formulae for R and V are \[{\text{ML}}^2 \text{I}^{- 2} \text{T}^{- 3}\] and \[{\text{ML}}^2 \text{T}^{- 3} \text{I}^{- 1}\] respectively.


Is it possible to add two vectors of unequal magnitudes and get zero? Is it possible to add three vectors of equal magnitudes and get zero?


Can you have  \[\vec{A} \times \vec{B} = \vec{A} \cdot \vec{B}\] with A ≠ 0 and B ≠ 0 ? What if one of the two vectors is zero?


Let \[\vec{C} = \vec{A} + \vec{B}\]


Let \[\vec{A} \text { and } \vec{B}\] be the two vectors of magnitude 10 unit each. If they are inclined to the X-axis at angle 30° and 60° respectively, find the resultant.


Suppose \[\vec{a}\] is a vector of magnitude 4.5 units due north. What is the vector (a) \[3 \vec{a}\], (b) \[- 4 \vec{a}\] ?


Two vectors have magnitudes 2 m and 3m. The angle between them is 60°. Find (a) the scalar product of the two vectors, (b) the magnitude of their vector product.


Draw a graph from the following data. Draw tangents at x = 2, 4, 6 and 8. Find the slopes of these tangents. Verify that the curve draw is y = 2x2 and the slope of tangent is \[\tan \theta = \frac{dy}{dx} = 4x\] 
\[\begin{array}x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ y & 2 & 8 & 18 & 32 & 50 & 72 & 98 & 128 & 162 & 200\end{array}\]


A curve is represented by y = sin x. If x is changed from \[\frac{\pi}{3}\text{ to }\frac{\pi}{3} + \frac{\pi}{100}\] , find approximately the change in y. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×