मराठी

If Diameter of a Circle is Increased by 40%, Then Its Area Increase by - Mathematics

Advertisements
Advertisements

प्रश्न

If diameter of a circle is increased by 40%, then its area increase by 

पर्याय

  • 96%

  • 40%

  • 80%

  •  48%

MCQ

उत्तर

If d is the original diameter of the circle, then the original radius is `d/2`

∴ area of the circle =`pi (d/2)^2`

∴ area of the circle=`pixxd^2/4`

If diameter of the circle increases by 40%, then new diameter of the circle is calculated as shown below, 

That is new diameter=`d+04 d`

`=1.4 d`

∴ new radius=`(1.4 d)/2`

∴ new radius=`0.7 d`

So, new area will be` pi(0.7 d)^2`

∴ New radius=`pixx0.49 d^2`  

Now we will calculate the change in area.

∴ Change in area =`pixx0.49d^2-pixxd^2/4`

∴ change in area=`(0.49-1/4)pid^2`

∴ change in area=`0.96 pi d^2/4` 

Therefore, its area is increased by `96%`

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Areas Related to Circles - Exercise 13.6 [पृष्ठ ७१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 13 Areas Related to Circles
Exercise 13.6 | Q 29 | पृष्ठ ७१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×