Advertisements
Advertisements
प्रश्न
In ΔABC, AB = AC and the bisectors of angles B and C intersect at point O.
Prove that : (i) BO = CO
(ii) AO bisects angle BAC.
उत्तर
In ΔABC,
AB = AC
⇒ ∠B = ∠C ...( angles opposite to equal sides are equal )
⇒ `1/2 ∠"B" = 1/2∠"C"`
⇒ ∠OBC = ∠OCB ...[ ∵ OB and OC are bisectors of ∠B and ∠C respectively, ∠OBC = `1/2∠"B" and ∠"OCB" = 1/2∠"C"` ] ...(i)
⇒ OB = OC ...( Sides opposite to equal angles are equal ) ...(ii)
Now, in ΔABO and ΔACO,
AB = AC ...( given )
∠OBC = ∠OCB ...[ from(i) ]
OB = OC ...[ from(ii) ] ...( proved )
∴ ΔABO ≅ ΔACO ...( by SAS congruence criterion )
⇒ ∠BAO = ∠CAO ...( c.p.c.t. )
⇒ AO bisects ∠BAC ...(proved)
APPEARS IN
संबंधित प्रश्न
ABCD is a quadrilateral in which AD = BC and ∠DAB = ∠CBA (See the given figure). Prove that
- ΔABD ≅ ΔBAC
- BD = AC
- ∠ABD = ∠BAC.
If perpendiculars from any point within an angle on its arms are congruent, prove that it lies on the bisector of that angle.
In two congruent triangles ABC and DEF, if AB = DE and BC = EF. Name the pairs of equal angles.
The given figure shows a circle with center O. P is mid-point of chord AB.
Show that OP is perpendicular to AB.
The perpendicular bisectors of the sides of a triangle ABC meet at I.
Prove that: IA = IB = IC.
A point O is taken inside a rhombus ABCD such that its distance from the vertices B and D are equal. Show that AOC is a straight line.
In the following figure, OA = OC and AB = BC.
Prove that: ΔAOD≅ ΔCOD
In the following figure, AB = EF, BC = DE and ∠B = ∠E = 90°.
Prove that AD = FC.
In the following figure, ∠A = ∠C and AB = BC.
Prove that ΔABD ≅ ΔCBE.
PQRS is a parallelogram. L and M are points on PQ and SR respectively such that PL = MR.
Show that LM and QS bisect each other.