Advertisements
Advertisements
प्रश्न
A point O is taken inside a rhombus ABCD such that its distance from the vertices B and D are equal. Show that AOC is a straight line.
उत्तर
In ΔAOD and ΔAOB,
AD = AB ...(given)
AO = AO ...(Common)
OD = OB ...(given)
⇒ ΔAOD ≅ ΔAOB ...(by SSS congruence criterion)
⇒ ∠AOD = ∠AOB ...(c.p.c.t.) ...(i)
Similarly, ΔDOC ≅ ΔBOC
⇒ ∠DOC = ∠BOC ...(c.p.c.t.) ...(ii)
But, ∠AOB + ∠AOD + ∠COD + ∠BOC = 4 Right angles ...[ Sum of the angles at a point is 4 Right angles ]
⇒ 2∠AOD + 2∠COD = 4 Right angles ....[ Using (i) and (ii) ]
⇒ ∠AOD + ∠COD = 2 Right angles
⇒ ∠AOD + ∠COD = 180°
⇒ ∠AOD and ∠COD form a linear pair.
⇒ AO and OC are in the same straight line.
⇒ AOC is a straight line.
APPEARS IN
संबंधित प्रश्न
You want to show that ΔART ≅ ΔPEN,
If you have to use SSS criterion, then you need to show
1) AR =
2) RT =
3) AT =
You want to show that ΔART ≅ ΔPEN,
If it is given that ∠T = ∠N and you are to use SAS criterion, you need to have
1) RT = and
2) PN =
In ΔABC, ∠A = 30°, ∠B = 40° and ∠C = 110°
In ΔPQR, ∠P = 30°, ∠Q = 40° and ∠R = 110°
A student says that ΔABC ≅ ΔPQR by AAA congruence criterion. Is he justified? Why or why not?
In Fig. 10.92, it is given that AB = CD and AD = BC. Prove that ΔADC ≅ ΔCBA.
In a triangle ABC, D is mid-point of BC; AD is produced up to E so that DE = AD.
Prove that :
(i) ΔABD and ΔECD are congruent.
(ii) AB = CE.
(iii) AB is parallel to EC
In a triangle ABC, D is mid-point of BC; AD is produced up to E so that DE = AD. Prove that:
AB = CE.
A line segment AB is bisected at point P and through point P another line segment PQ, which is perpendicular to AB, is drawn. Show that: QA = QB.
In ∆ABC, AB = AC. Show that the altitude AD is median also.
In the following figure, AB = AC and AD is perpendicular to BC. BE bisects angle B and EF is perpendicular to AB.
Prove that : ED = EF
In the following figure, AB = EF, BC = DE and ∠B = ∠E = 90°.
Prove that AD = FC.