मराठी

In a Convex Hexagon, Prove that the Sum of All Interior Angle is Equal to Twice the Sum of Its Exterior Angles Formed by Producing the Sides in the Same Order. - Mathematics

Advertisements
Advertisements

प्रश्न

In a convex hexagon, prove that the sum of all interior angle is equal to twice the sum of its exterior angles formed by producing the sides in the same order.

टीपा लिहा

उत्तर

\[\text{ For a convex hexagon, interior angle }  = \left( \frac{2n - 4}{n} \times 90° \right)\]
\[\text{ For a hexagon,}  n = 6\]
\[ \therefore \text{ Interior angle }  = \left( \frac{12 - 4}{6} \times 90° \right)\]
\[ = \left( \frac{8}{6} \times 90° \right)\]
\[ = 120°\]
\[\text{ So, the sum of all the interior angles } = 120°  + 120° + 120° + 120° + 120° + 120°  = 720° \]
\[ \therefore \text{ Exterior angle } = \left( \frac{360}{n} \right)^° = \left( \frac{360}{6} \right)^° = {60}^° \]
\[\text{ So, sum of all the exterior angles } = {60}^° + {60}^° + {60}^° + {60}^° + {60}^° + {60}^° = {360}^° \]
\[\text{ Now, sum of all interior angles } = 720° \]
\[ = 2\left( 360° \right)\]
\[ = \text{ twice the exterior angles } \]
\[\text{ Hence proved }  .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Understanding Shapes-II (Quadrilaterals) - Exercise 16.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 8
पाठ 16 Understanding Shapes-II (Quadrilaterals)
Exercise 16.1 | Q 21 | पृष्ठ १७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×