मराठी

In each of the given figures; PA = PB and QA = QB. i. ii. Prove, in each case, that PQ (produce, if required) is perpendicular bisector of AB. - Mathematics

Advertisements
Advertisements

प्रश्न

In each of the given figures; PA = PB and QA = QB. 

i.
ii.

Prove, in each case, that PQ (produce, if required) is perpendicular bisector of AB. Hence, state the locus of the points equidistant from two given fixed points.

बेरीज

उत्तर

Construction: Join PQ which meets AB in D. 

 

Proof: P is equidistant from A and B.

∴ P lies on the perpendicular bisector of AB.

Similarly, Q is equidistant from A and B.

∴ Q lies on perpendicular bisector of AB.

∴ P and Q both lie on the perpendicular bisector of AB.

∴ PQ is perpendicular bisector of AB.

Hence, locus of the points which are equidistant from two fixed points, is a perpendicular bisector of the line joining the fixed points. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Loci (Locus and Its Constructions) - Exercise 16 (A) [पृष्ठ २३७]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 16 Loci (Locus and Its Constructions)
Exercise 16 (A) | Q 5 | पृष्ठ २३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Construct a triangle ABC, in which AB = 4.2 cm, BC = 6.3 cm and AC = 5 cm. Draw perpendicular bisector of BC which meets AC at point D. Prove that D is equidistant from B and C. 


The given figure shows a triangle ABC in which AD bisects angle BAC. EG is perpendicular bisector of side AB which intersects AD at point F.

Prove that: 


F is equidistant from A and B.


The given figure shows a triangle ABC in which AD bisects angle BAC. EG is perpendicular bisector of side AB which intersects AD at point F.

Prove that: 


F is equidistant from AB and AC.


Construct a triangle ABC, with AB = 7 cm, BC = 8 cm and ∠ABC = 60°. Locate by construction the point P such that:

  1. P is equidistant from B and C.
  2. P is equidistant from AB and BC.
    Measure and record the length of PB.

Describe the locus of points at a distance 2 cm from a fixed line. 


Describe the locus of a stone dropped from the top of a tower. 


In a quadrilateral PQRS, if the bisectors of ∠ SPQ and ∠ PQR meet at O, prove that O is equidistant from PS and QR. 


In Fig. AB = AC, BD and CE are the bisectors of ∠ABC and ∠ACB respectively such that BD and CE intersect each other at O. AO produced meets BC at F. Prove that AF is the right bisector of BC.


Given: ∠BAC, a line intersects the arms of ∠BAC in P and Q. How will you locate a point on line segment PQ, which is equidistant from AB and AC? Does such a point always exist?


Use ruler and compasses for the following question taking a scale of 10 m = 1 cm. A park in a city is bounded by straight fences AB, BC, CD and DA. Given that AB = 50 m, BC = 63 m, ∠ABC = 75°. D is a point equidistant from the fences AB and BC. If ∠BAD = 90°, construct the outline of the park ABCD. Also locate a point P on the line BD for the flag post which is equidistant from the corners of the park A and B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×