Advertisements
Advertisements
प्रश्न
In the figure, the two triangles are congruent.
The corresponding parts are marked. We can write ΔRAT ≅ ?
उत्तर
It can be observed that,
∠RAT = ∠WON
∠ART = ∠OWN
AR = OW
Therefore, ΔRAT ≅ ΔWON, by ASA criterion.
APPEARS IN
संबंधित प्रश्न
You have to show that ΔAMP ≅ AMQ.
In the following proof, supply the missing reasons.
Steps | Reasons | ||
1 | PM = QM | 1 | ... |
2 | ∠PMA = ∠QMA | 2 | ... |
3 | AM = AM | 3 | ... |
4 | ΔAMP ≅ ΔAMQ | 4 | ... |
Prove that the perimeter of a triangle is greater than the sum of its altitudes.
A triangle ABC has ∠B = ∠C.
Prove that: The perpendiculars from the mid-point of BC to AB and AC are equal.
From the given diagram, in which ABCD is a parallelogram, ABL is a line segment and E is mid-point of BC.
prove that : AL = 2DC
In the following figure, AB = EF, BC = DE and ∠B = ∠E = 90°.
Prove that AD = FC.
AD and BC are equal perpendiculars to a line segment AB. If AD and BC are on different sides of AB prove that CD bisects AB.
In the following figure, ABC is an equilateral triangle in which QP is parallel to AC. Side AC is produced up to point R so that CR = BP.
Prove that QR bisects PC.
Hint: ( Show that ∆ QBP is equilateral
⇒ BP = PQ, but BP = CR
⇒ PQ = CR ⇒ ∆ QPM ≅ ∆ RCM ).
In a triangle, ABC, AB = BC, AD is perpendicular to side BC and CE is perpendicular to side AB.
Prove that: AD = CE.
ABC is an isosceles triangle with AB = AC and BD and CE are its two medians. Show that BD = CE.
ABC is a right triangle with AB = AC. Bisector of ∠A meets BC at D. Prove that BC = 2AD.