Advertisements
Advertisements
प्रश्न
In the given figure, AB || DC, BO = 6 cm and DQ = 8 cm; find: BP × DO.
उत्तर
In ΔDOQ and ΔBOP,
∠QDO = ∠PBO ...(Since AB || DC that is, PB || DQ)
So, ∠DOQ = ∠BOP ...(Vertically opposite angles)
`=>` ΔDOQ ∼ ΔBOP ...(AA criterion for similarity)
`=> (DO)/(BO) = (DQ)/(BP)`
`=> (DO)/6 = 8/(BP)`
`=>` BP × DO = 8 × 6 = 48 cm2
APPEARS IN
संबंधित प्रश्न
P is a point on side BC of a parallelogram ABCD. If DP produced meets AB produced at point L, prove that: DL : DP = AL : DC.
In ΔABC; BM ⊥ AC and CN ⊥ AB; show that:
`(AB)/(AC) = (BM)/(CN) = (AM)/(AN)`
In the given figure, AD = AE and AD2 = BD × EC. Prove that: triangles ABD and CAE are similar.
In the given figure, AB and DE are perpendiculars to BC.
If AB = 6 cm, DE = 4 cm and AC = 15 cm. Calculate CD.
ABC is a right angled triangle with ∠ABC = 90°. D is any point on AB and DE is perpendicular to AC. Prove that :
If AC = 13 cm, BC = 5 cm and AE = 4 cm. Find DE and AD.
In the adjoining figure, ΔACB ∼ ∆APQ. If BC = 10 cm, PQ = 5 cm, BA = 6.5 cm and AP = 2.8 cm find the area (∆ACB) : area (∆APQ).
On a map drawn to a scale of 1 : 2,50,000; a triangular plot of land has the following measurements : AB = 3 cm, BC = 4 cm and angle ABC = 90°.
Calculate:
- the actual lengths of AB and BC in km.
- the area of the plot in sq. km.
In the figure below, PB and QA are perpendiculars to the line segment AB. If PO = 6 cm, QO = 9 cm and the area of ΔPOB = 120 cm2, find the area of ΔQOA.
Triangles ABC and DEF are similar.
If area (ΔABC) = 9 cm2, area (ΔDEF) = 64 cm2 and BC = 5·1 cm find AB.
Triangles ABC and DEF are similar.
If AC = 19 cm and DF = 8 cm, find the ratio between the areas of two triangles.