मराठी

In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°. Calculate : ∠DBC Also, show that the ΔAOD is an equilateral triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°. 

Calculate : ∠DBC 

Also, show that the ΔAOD is an equilateral triangle.

बेरीज

उत्तर


OD = OB

∴ ∠ODB = ∠OBD

Or ∠ABD = 30°

Also, AB || ED

∴ ∠DBC = ∠ODB = 30°  (Alternate angles)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Circles - Exercise 17 (A) [पृष्ठ २६१]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 17 Circles
Exercise 17 (A) | Q 38.3 | पृष्ठ २६१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Calculate the area of the shaded region, if the diameter of the semicircle is equal to 14 cm. Take `pi = 22/7`


In the figure, given alongside, AB || CD and O is the centre of the circle. If ∠ADC = 25°; find the angle AEB. Give reasons in support of your answer.


In the given figure, AB is a diameter of the circle with centre O. DO is parallel to CB and ∠DCB = 120°.

Calculate:

  1. ∠DAB,
  2. ∠DBA,
  3. ∠DBC,
  4. ∠ADC.

Also, show that the ΔAOD is an equilateral triangle.


In the given figure, PQ is a diameter. Chord SR is parallel to PQ. Given that ∠PQR = 58°,

Calculate:

  1. ∠RPQ,
  2. ∠STP.


Prove that the circle drawn on any one of the equal sides of an isosceles triangle as diameter bisects the base.


AB is a line segment and M is its mid-point. Three semi-circles are drawn with AM, MB and AB as diameters on the same side of the line AB. A circle with radius r unit is drawn so that it touches all the three semi-circles. Show that : AB = 6 × r

Using ruler and a compass only construct a semi-circle with diameter BC = 7cm. Locate a point A on the circumference of the semicircle such that A is equidistant from B and C. Complete the cyclic quadrilateral ABCD, such that D is equidistant from AB and BC. Measure ∠ADC and write it down.


In the given figure, RS is a diameter of the circle. NM is parallel to RS and ∠MRS = 29°. Calculate : ∠NRM


In the given figure, AB is a diameter of the circle. Chord ED is parallel to AB and ∠EAB = 63°. Calculate : ∠BCD. 


In the figure, ∠DBC = 58°. BD is diameter of the circle.

Calculate:

  1. ∠BDC
  2. ∠BEC
  3. ∠BAC


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×