मराठी

In the given figure, AC is a tangent to circle at point B. ∆EFD is an equilateral triangle and ∠CBD = 𝟒𝟒𝟒𝟒°. Find: (a) ∠BFD (b) ∠FBD (c)∠ABF - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, AC is a tangent to circle at point B. ∆EFD is an equilateral triangle and ∠CBD = 40°. Find:

  1. ∠BFD
  2. ∠FBD
  3. ∠ABF
बेरीज

उत्तर

Given - In Diagram, ∆FED is an equilateral triangle, ∠CBD = 40°

To Find -

  1. ∠BFD,
  2. ∠FBD,
  3. ∠ABF

(a)  ∠BFD = ∠CBD = 40°    ....[Alternate segment theorem]

(b) ∠FBD is opposite to ∠FED.

So, It is a cyclic Quadrilateral. So, ∠FBD and ∠FED will be Supplementary to each other.

∴ ∠FBD + ∠FED = 180°  ....[Cyclic Quadrilateral]

∠FBD + 60° = 180°  

∠FBD = 180° - 60°

∠FBD = 120°   

(c) AC is a line segment. 

So, ∠ABF = 180° - (120° + 40°)   ....[Line Segment]

∠ABF = 180° - 100°

∠ABF = 20°

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Set 1

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×