Advertisements
Advertisements
प्रश्न
If PQ is a tangent to the circle at R; calculate:
- ∠PRS,
- ∠ROT.
Given O is the centre of the circle and angle TRQ = 30°.
उत्तर
PQ is a tangent and OR is the radius.
∴ OR ⊥ PQ
∴ ∠ORT = 90°
`=>` ∠TRQ = 90° – 30° = 60°
But in ΔOTR,
OT = OR ...(Radii of the same circle)
∴ ∠OTR = 60° Or ∠STR = 60°
But,
∠PRS = ∠STR = 60 ...(Angle in the alternate segment)
In ΔORT,
∠ORT = 60°
∠OTR = 60°
∴ ∠ROT = 180° – (60° + 60°)
∴ ∠ROT = 180° – 120° = 60°
APPEARS IN
संबंधित प्रश्न
In the given figure, O is the center of the circle and AB is a tangent at B. If AB = 15 cm and AC = 7.5 cm, calculate the radius of the circle.
In the following figure, PQ is the tangent to the circle at A, DB is the diameter and O is the centre of the circle. If ∠ADB = 30° and ∠CBD = 60°, calculate:
- ∠QAB,
- ∠PAD,
- ∠CDB.
AB is the diameter and AC is a chord of a circle with centre O such that angle BAC = 30°. The tangent to the circle at C intersects AB produced in D. show that BC = BD.
Tangent at P to the circumcircle of triangle PQR is drawn. If the tangent is parallel to side, QR show that ΔPQR is isosceles.
In the following figure, PQ and PR are tangents to the circle, with centre O. If ∠ QPR = 60° , calculate:
∠ QSR
PT is a tangent to the circle at T. If ∠ ABC = 70° and ∠ ACB = 50° ; calculate : ∠ APT
In Fig. l and m are two parallel tangents at A and B. The tangent at C makes an intercept DE between n and m. Prove that ∠ DFE = 90°
In Fig. AT is a tangent to the circle. If m∠ABC = 50°, AC = BC, Find ∠BAT.
A, B, and C are three points on a circle. The tangent at C meets BN produced at T. Given that ∠ ATC = 36° and ∠ ACT = 48°, calculate the angle subtended by AB at the center of the circle.
In the given figure PT is a tangent to the circle. Chord BA produced meets the tangent PT at P.
Given PT = 20 cm and PA = 16 cm.
- Prove ΔPTB ~ ΔPAT
- Find the length of AB.