मराठी

In Triangle Abc; M is Mid-point of Ab, N is Mid-point of Ac and D is Any Point in Base Bc. Use the Intercept Theorem to Show that Mn Bisects Ad. - Mathematics

Advertisements
Advertisements

प्रश्न

In triangle ABC; M is mid-point of AB, N is mid-point of AC and D is any point in base BC. Use the intercept Theorem to show that MN bisects AD.

बेरीज

उत्तर

The figure is shown below

Since M and N are the mid-point of AB and AC, MN || BC
According to intercept theorem Since MN || BC and AM = BM,
Therefore AX = DX. Hence proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Mid-point and Its Converse [ Including Intercept Theorem] - Exercise 12 (B) [पृष्ठ १५४]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 12 Mid-point and Its Converse [ Including Intercept Theorem]
Exercise 12 (B) | Q 8 | पृष्ठ १५४

संबंधित प्रश्‍न

ABCD is a square E, F, G and H are points on AB, BC, CD and DA respectively, such that AE = BF = CG = DH. Prove that EFGH is a square.


In below Fig, ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that CQ = `1/4` AC. If PQ produced meets BC at R, prove that R is a mid-point of BC.


ABCD is a parallelogram, E and F are the mid-points of AB and CD respectively. GH is any line intersecting AD, EF and BC at G, P and H respectively. Prove that GP = PH


In the given figure, ΔABC is an equilateral traingle. Points F, D and E are midpoints of side AB, side BC, side AC respectively. Show that ΔFED is an equilateral traingle.


Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: PQ, if AB = 12 cm and DC = 10 cm.


In the given figure, PS = 3RS. M is the midpoint of QR. If TR || MN || QP, then prove that:

RT = `(1)/(3)"PQ"`


In the given figure, T is the midpoint of QR. Side PR of ΔPQR is extended to S such that R divides PS in the ratio 2:1. TV and WR are drawn parallel to PQ. Prove that T divides SU in the ratio 2:1 and WR = `(1)/(4)"PQ"`.


D, E and F are the mid-points of the sides BC, CA and AB, respectively of an equilateral triangle ABC. Show that ∆DEF is also an equilateral triangle.


E is the mid-point of a median AD of ∆ABC and BE is produced to meet AC at F. Show that AF = `1/3` AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×