Advertisements
Advertisements
प्रश्न
Prove that the figure obtained by joining the mid-points of the adjacent sides of a rectangle is a rhombus.
उत्तर
Given: Let ABCD be a rectangle where P, Q, R, S are the midpoint of AB, BC, CD, DA.
To Prove: PQRS is a rhombus
Construction: Draw two diagonal BD and AC as shown in figure. Where BD = AC
(Since diagonal of the rectangle are equal)
Proof:
From ΔABD and ΔBCD
PS = `1/2` BD = QR and PS || BD || QR
2PS = 2QR = BD and PS || QR ...(1)
Similarly, 2PQ = 2SR = AC and PQ || SR ...(2)
From (1) and (2) we get
PQ = QR = RS = PS
Therefore, PQRS is a rhombus.
Hence, proved.
APPEARS IN
संबंधित प्रश्न
ABC is a triang D is a point on AB such that AD = `1/4` AB and E is a point on AC such that AE = `1/4` AC. Prove that DE = `1/4` BC.
Fill in the blank to make the following statement correct:
The triangle formed by joining the mid-points of the sides of a right triangle is
In the given figure, `square`PQRS and `square`MNRL are rectangles. If point M is the midpoint of side PR then prove that,
- SL = LR
- LN = `1/2`SQ
The diagonals of a quadrilateral intersect at right angles. Prove that the figure obtained by joining the mid-points of the adjacent sides of the quadrilateral is rectangle.
In parallelogram ABCD, E and F are mid-points of the sides AB and CD respectively. The line segments AF and BF meet the line segments ED and EC at points G and H respectively.
Prove that:
(i) Triangles HEB and FHC are congruent;
(ii) GEHF is a parallelogram.
In ΔABC, D, E, F are the midpoints of BC, CA and AB respectively. Find FE, if BC = 14 cm
D, E and F are the mid-points of the sides AB, BC and CA of an isosceles ΔABC in which AB = BC. Prove that ΔDEF is also isosceles.
In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: ΔHEB ≅ ΔHFC
The figure obtained by joining the mid-points of the sides of a rhombus, taken in order, is ______.
P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a quadrilateral ABCD such that AC ⊥ BD. Prove that PQRS is a rectangle.