Advertisements
Advertisements
प्रश्न
क्या `f (x) = {(x+5, "यदि" x<=1),(x - 5, "यदि" x > 1):}` द्वारा परिभाषित फलन, एक संतत फलन है?
उत्तर
`f (x) = {(x+5, "यदि" x<=1),(x - 5, "यदि" x > 1):}`
`lim_(x -> 1^-) f(x) = lim_(x -> 1^-)` (x + 5)
= `lim_(h -> 0)` [1 - h + 5]
= `lim_(h -> 0)` (6 - h)
= 6 - 0
= 6
`lim_(x -> 1^+) f(x) = lim_(x -> 1^+)` (x - 5)
= `lim_(h -> 0)` (1 + h - 5)
= `lim_(h -> 0)` (h - 4)
= 0 - 4
= - 4
अत: x = 1 पर f संतत नहीं है।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि फलन f(x) = 5x - 3, x = 0, x = - 3 तथा x = 5 पर संतत है।
x = 3 पर फलन f(x) = 2x2 - 1 के सातत्य की जाँच कीजिए।
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) `= 1/(x - 5), x ne 5`
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) `= (x^2 - 25)/(x + 5), x ne -5`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(2x + 3, "यदि" x<=2),(2x - 3, "यदि" x > 2):}`
क्या `f (x) = {(x, "यदि" x<=1),(5, "यदि" x > 1):}` द्वारा परिभाषित फलन f, x = 0, x = 1 तथा x = 2 पर संतत है?
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|/x , "यदि" x != 0),(0, "यदि" x = 0):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x/|x|, "यदि" x<0),(-1, "यदि" x >= 0):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x^10 - 1, "यदि" x<=1),(x^2, "यदि" x > 1):}`
फलन f के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(3"," " यदि", 0 le "x" le 1),(4"," " यदि", 1 < "x" < 3),(5"," " यदि", 3 le "x" le 10):}`
फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(-2"," " यदि", "x" le -1),(2"x"","" यदि", -1 le "x" le 1),(2"," " यदि", "x" > 1):}`
`lambda` के किस मान के लिए `"f"("x") = {(lambda ("x"^2 - 2"x")"," " यदि" "x" le 0), (4 "x" + 1"," " यदि" "x" > 0):}` द्वारा परिभाषित फलन x = 0 पर संतत है। x = 1 पर इसके सांतत्य पर विचार कीजिए।
निम्नलिखित फलन के सातत्य पर विचार कीजिए -
f(x) = sin x + cos x
निम्नलिखित फलन के सातत्य पर विचार कीजिए:
f(x) = sin x - cos x
निम्नलिखित फलन के सातत्य पर विचार कीजिए:
f(x) = sin x. cos x
cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।
f के सांतत्य की जाँच कीजिए, जहाँ f निम्नलिखित प्रकार से परिभाषित है:
`"f"("x") = {("sin x" - "cos x""," " यदि" "x" ne 0),(-1"," " यदि" "x" = 0):}`
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"("x") = {(("k cos x")/(pi - 2"x")"," " यदि" "x" ne pi/2),(3"," " यदि" "x" = pi/2):}` द्वारा परिभाषित फलन `"x" = pi/2` पर
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"(x) = {("kx" + 1"," " यदि" "x" le pi),("cos x"","" यदि" "x" > pi):}` द्वारा परिभाषित फलन `"x" = pi` पर
दर्शाइए कि f(x) - cos (x2) द्वारा परिभाषित फलन एक संतत फलन है।
जाँचिए कि क्या sin |x| एक संतत फलन है।
f(x) = |x| - |x + 1| द्वारा परिभाषित फलन के सभी असांत्यता के बिंदुओं को ज्ञात कीजिए।
यदि `y = sin^-1 x + sin^-1 sqrt (1 - x^2), 0 <x <1` है तो `dy/dx` ज्ञात कीजिए।
यदि x = a (cost + t sin t) और y = a (sin t – tcost) है तो `(d^2y)/dx^2` ज्ञात कीजिए।