मराठी

F(x) = |x| - |x + 1| द्वारा परिभाषित फलन के सभी असांत्यता के बिंदुओं को ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

f(x) = |x| - |x + 1| द्वारा परिभाषित फलन के सभी असांत्यता के बिंदुओं को ज्ञात कीजिए।

बेरीज

उत्तर

`f(x) = {(-x - [-(x + 1)], "यदि"   x<-1),(-(x) - (x+1), "यदि"  -1 <=x<0),(x - (x+1), "यदि"  x>=0):}`

`{(1, "यदि"  x<-1),(-2x-1, "यदि"  -1 <=x<0),(-1, "यदि"   x>=0):}`

पर = -1

`lim_(x->1^-) f(x) = 1`

`lim_(x->1^+) f(x) = lim_(h->0) (-2(-1+h)) = 1`

f (-1) = -2(-1) -1 = 1

इस प्रकार, `lim_(x->1^-) f (x) = lim_(x->1^+) f (x) = f (-1)`

= f, x = -1 पर संतत है।

x= 0

`lim_(x->0^-) f(x) = lim_(x->0^-)(-2x-1) = lim_(h->0)(-2(-h)-1) = -1`

`lim_(x->0^+) f(x) = -1`

साथ ही, f(0) = -1

इस प्रकार,`lim_(x->0^-) f(x) = lim_(x->0^+) f(x) = f(0)`

f, x = 0 पर संतत है।

इसके अलावा, f एक स्थिरांक है, जो x<-1 या x>0 होने पर संतत होता है।

∴ f सभी x ∈ R के लिए संतत है।

shaalaa.com
सांतत्य - संतत फलनों का बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य तथा अवकलनीयता - प्रश्नावली 5.1 [पृष्ठ १७६]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 5 सांतत्य तथा अवकलनीयता
प्रश्नावली 5.1 | Q 34. | पृष्ठ १७६

संबंधित प्रश्‍न

सिद्ध कीजिए कि फलन f(x) = 5x - 3, x = 0, x = - 3 तथा x = 5 पर संतत है।


निम्नलिखित फलन की सातत्य की जाँच कीजिए:

f(x) `= (x^2 - 25)/(x + 5), x ne -5`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(2x + 3, "यदि"  x<=2),(2x - 3, "यदि"  x > 2):}`


क्या `f (x) = {(x, "यदि"  x<=1),(5, "यदि"  x > 1):}` द्वारा परिभाषित फलन f, x = 0, x = 1 तथा x = 2 पर संतत है?


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f(x) = {(|x|/x , "यदि"  x != 0),(0, "यदि"  x = 0):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(x/|x|, "यदि"  x<0),(-1, "यदि"  x >= 0):}`


फलन f के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:

`"f"("x") = {(3"," " यदि", 0 le "x" le 1),(4"," " यदि", 1 < "x" < 3),(5"," " यदि", 3 le "x" le 10):}`


a और b के उन मानों को ज्ञात कीजिए। जिनके लिए `f(x)= {(ax + 1, "यदि"  x<= 3),(bx + 3, "यदि"  x  > 3):}`  द्वारा परिभाषित फलन x = 3 पर संतत है।


`lambda` के किस मान के लिए `"f"("x") = {(lambda ("x"^2 - 2"x")"," " यदि"  "x" le 0), (4 "x" + 1"," " यदि"  "x" > 0):}` द्वारा परिभाषित फलन x = 0 पर संतत है। x = 1 पर इसके सांतत्य पर विचार कीजिए।


दर्शाइए कि g(x) = x - [x] द्वारा परिभाषित फलन समस्त पूर्णांक बिंदुओं पर असंतत है। यहाँ [x] उस महत्तम पूर्णाक निरूपित करता है, जो x के बराबर या x से कम है।


निम्नलिखित फलन के सातत्य पर विचार कीजिए:

f(x) = sin x - cos x


निम्नलिखित फलन के सातत्य पर विचार कीजिए:

f(x) = sin x. cos x


cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।


f के सभी असांतत्य के बिंदुओं को ज्ञात कीजिए, जहाँ `f (x) = {(sinx/x, "यदि"   x<0),(x + 1, "यदि"  x >= 0):}`


निर्धारित कीजिए कि फलन f, `"f"("x") = {("x"^2 "sin" 1/"x""," " यदि"  "x" ne 0),(0"," " यदि"  "x" = 0):}`  द्वारा परिभाषित एक संतत फलन है।


f के सांतत्य की जाँच कीजिए, जहाँ f निम्नलिखित प्रकार से परिभाषित है:

`"f"("x") = {("sin x" - "cos x""," " यदि"  "x" ne 0),(-1"," " यदि"  "x" = 0):}`


k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:

`"f"(x) = {("kx"^2"," " यदि"  "x" le 2),(3"," " यदि"  "x" > 2):}` द्वारा परिभाषित फलन x = 2 पर


k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:

`"f"(x) = {("kx" + 1"," " यदि"  "x" le pi),("cos x"","" यदि"  "x" > pi):}` द्वारा परिभाषित फलन `"x" = pi` पर


k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:

`"f"(x) = {("kx" + 1"," " यदि"  x le 5),(3x - 5"," " यदि"  x > 5):}` द्वारा परिभाषित फलन x = 5 पर


a तथा b के मानों को ज्ञात कीजिए ताकि `"f"(x) = {(5"," " यदि"   x le 2),("a"x + "b""," " यदि"  2 < x < 10),(21"," " यदि"  x ge 10):}` द्वारा परिभाषित फलन एक संतत फलन हो।


दर्शाइए कि f(x) - cos (x2) द्वारा परिभाषित फलन एक संतत फलन है।


यदि `y = sin^-1 x + sin^-1 sqrt (1 - x^2), 0 <x <1`  है तो `dy/dx` ज्ञात कीजिए।


यदि x = a (cost + t sin t) और y = a (sin t – tcost) है तो `(d^2y)/dx^2` ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×