मराठी

जाँचिए कि क्या sin |x| एक संतत फलन है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

जाँचिए कि क्या sin |x| एक संतत फलन है।

बेरीज

उत्तर

माना f(x) = sin `abs x`

x = c `in` R पर,

`lim_(x -> c)  f(x) = lim_(x -> c)  (sin abs x) = sin abs c`

f(c) = sin `abs c`

अत: x = c `in` R पर f एक संतत फलन है। 

shaalaa.com
सांतत्य - संतत फलनों का बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य तथा अवकलनीयता - प्रश्नावली 5.1 [पृष्ठ १७६]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 5 सांतत्य तथा अवकलनीयता
प्रश्नावली 5.1 | Q 33. | पृष्ठ १७६

संबंधित प्रश्‍न

सिद्ध कीजिए कि फलन f(x) = 5x - 3, x = 0, x = - 3 तथा x = 5 पर संतत है।


निम्नलिखित फलन की सातत्य की जाँच कीजिए:

f(x) = x - 5


निम्नलिखित फलन की सातत्य की जाँच कीजिए:

f(x) `= 1/(x - 5), x ne 5`


निम्नलिखित फलन की सातत्य की जाँच कीजिए:

f(x) `= (x^2 - 25)/(x + 5), x ne -5`


निम्नलिखित फलन की सातत्य की जाँच कीजिए:

f(x) = `abs (x - 5)`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(2x + 3, "यदि"  x<=2),(2x - 3, "यदि"  x > 2):}`


क्या `f (x) = {(x, "यदि"  x<=1),(5, "यदि"  x > 1):}` द्वारा परिभाषित फलन f, x = 0, x = 1 तथा x = 2 पर संतत है?


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f(x) = {(|x|/x , "यदि"  x != 0),(0, "यदि"  x = 0):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(x/|x|, "यदि"  x<0),(-1, "यदि"  x >= 0):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(x^10 - 1, "यदि"  x<=1),(x^2, "यदि"  x > 1):}`


क्या `f (x) = {(x+5, "यदि"  x<=1),(x - 5, "यदि"  x > 1):}` द्वारा परिभाषित फलन, एक संतत फलन है?


फलन f के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:

`"f"("x") = {(3"," " यदि", 0 le "x" le 1),(4"," " यदि", 1 < "x" < 3),(5"," " यदि", 3 le "x" le 10):}`


a और b के उन मानों को ज्ञात कीजिए। जिनके लिए `f(x)= {(ax + 1, "यदि"  x<= 3),(bx + 3, "यदि"  x  > 3):}`  द्वारा परिभाषित फलन x = 3 पर संतत है।


दर्शाइए कि g(x) = x - [x] द्वारा परिभाषित फलन समस्त पूर्णांक बिंदुओं पर असंतत है। यहाँ [x] उस महत्तम पूर्णाक निरूपित करता है, जो x के बराबर या x से कम है।


cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।


f के सभी असांतत्य के बिंदुओं को ज्ञात कीजिए, जहाँ `f (x) = {(sinx/x, "यदि"   x<0),(x + 1, "यदि"  x >= 0):}`


f के सांतत्य की जाँच कीजिए, जहाँ f निम्नलिखित प्रकार से परिभाषित है:

`"f"("x") = {("sin x" - "cos x""," " यदि"  "x" ne 0),(-1"," " यदि"  "x" = 0):}`


k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:

`"f"(x) = {("kx"^2"," " यदि"  "x" le 2),(3"," " यदि"  "x" > 2):}` द्वारा परिभाषित फलन x = 2 पर


दर्शाइए कि f(x) - cos (x2) द्वारा परिभाषित फलन एक संतत फलन है।


दर्शाइए कि f(x) = |cos x| द्वारा परिभाषित फलन एक संतत फलन है।


यदि `y = sin^-1 x + sin^-1 sqrt (1 - x^2), 0 <x <1`  है तो `dy/dx` ज्ञात कीजिए।


यदि - 1 < x < 1 के लिए `xsqrt(1 + y) + y sqrt(1 + x) = 0` है तो सिद्ध कीजिए की `dy/dx = - 1/(1 + x)^2`.


यदि x = a (cost + t sin t) और y = a (sin t – tcost) है तो `(d^2y)/dx^2` ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×