मराठी

निम्नलिखित फलन की सातत्य की जाँच कीजिए: f(x) = x - 5 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित फलन की सातत्य की जाँच कीजिए:

f(x) = x - 5

बेरीज

उत्तर

मान लीजिए कि a एक वास्तविक संख्या है, तो

`lim_(x->a^+) f (x) = lim_(h->0) (a + h) - 5 = a - 5`

`lim_(x->a^-) f (x) = lim_(h->0) (a - h) -5 = a - 5`

f(x) = x - 5 एक बहुपद फलन है।

`∵ lim_(x->a^+) f(x) = lim_(x->a^-) f(x)f(a)`

अतः दिया गया फलन f(x) = (x - 5) संतत है।

shaalaa.com
सांतत्य - संतत फलनों का बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सांतत्य तथा अवकलनीयता - प्रश्नावली 5.1 [पृष्ठ १७३]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 5 सांतत्य तथा अवकलनीयता
प्रश्नावली 5.1 | Q 3. (a) | पृष्ठ १७३

संबंधित प्रश्‍न

x = 3 पर फलन f(x) = 2x2 - 1 के सातत्य की जाँच कीजिए।


सिद्ध कीजिए कि फलन f(x) = xn, x = n, पर संतत है, जहाँ n एक धन पूर्णांक है।


निम्नलिखित फलन की सातत्य की जाँच कीजिए:

f(x) = `abs (x - 5)`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(2x + 3, "यदि"  x<=2),(2x - 3, "यदि"  x > 2):}`


क्या `f (x) = {(x, "यदि"  x<=1),(5, "यदि"  x > 1):}` द्वारा परिभाषित फलन f, x = 0, x = 1 तथा x = 2 पर संतत है?


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f(x) = {(|x|+3, "यदि"  x<= -3),(-2x, "यदि"  -3 < x < 3),(6x + 2, "यदि"  x >= 3):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f(x) = {(|x|/x , "यदि"  x != 0),(0, "यदि"  x = 0):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(x+1, "यदि"  x>=1),(x^2+1, "यदि"   x < 1):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f(x) = {(x^3 - 3, "यदि"  x <= 2),(x^2 + 1, "यदि"  x > 2):}`


फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:

`"f"("x") = {(2"x""," " यदि", "x" < 0),(0"," " यदि", 0 le "x" le 1),(4"x" "," " यदि", "x" > 1):}`


दर्शाइए कि g(x) = x - [x] द्वारा परिभाषित फलन समस्त पूर्णांक बिंदुओं पर असंतत है। यहाँ [x] उस महत्तम पूर्णाक निरूपित करता है, जो x के बराबर या x से कम है।


निम्नलिखित फलन के सातत्य पर विचार कीजिए:

f(x) = sin x. cos x


cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।


k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:

`"f"("x") = {(("k cos x")/(pi - 2"x")"," " यदि"  "x" ne pi/2),(3","  " यदि"   "x" = pi/2):}` द्वारा परिभाषित फलन `"x" = pi/2` पर


k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:

`"f"(x) = {("kx"^2"," " यदि"  "x" le 2),(3"," " यदि"  "x" > 2):}` द्वारा परिभाषित फलन x = 2 पर


k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:

`"f"(x) = {("kx" + 1"," " यदि"  "x" le pi),("cos x"","" यदि"  "x" > pi):}` द्वारा परिभाषित फलन `"x" = pi` पर


a तथा b के मानों को ज्ञात कीजिए ताकि `"f"(x) = {(5"," " यदि"   x le 2),("a"x + "b""," " यदि"  2 < x < 10),(21"," " यदि"  x ge 10):}` द्वारा परिभाषित फलन एक संतत फलन हो।


दर्शाइए कि f(x) - cos (x2) द्वारा परिभाषित फलन एक संतत फलन है।


दर्शाइए कि f(x) = |cos x| द्वारा परिभाषित फलन एक संतत फलन है।


जाँचिए कि क्या sin |x| एक संतत फलन है।


यदि `y = sin^-1 x + sin^-1 sqrt (1 - x^2), 0 <x <1`  है तो `dy/dx` ज्ञात कीजिए।


यदि - 1 < x < 1 के लिए `xsqrt(1 + y) + y sqrt(1 + x) = 0` है तो सिद्ध कीजिए की `dy/dx = - 1/(1 + x)^2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×