Advertisements
Advertisements
प्रश्न
f(x) = |x| - |x + 1| द्वारा परिभाषित फलन के सभी असांत्यता के बिंदुओं को ज्ञात कीजिए।
उत्तर
`f(x) = {(-x - [-(x + 1)], "यदि" x<-1),(-(x) - (x+1), "यदि" -1 <=x<0),(x - (x+1), "यदि" x>=0):}`
`{(1, "यदि" x<-1),(-2x-1, "यदि" -1 <=x<0),(-1, "यदि" x>=0):}`
पर = -1
`lim_(x->1^-) f(x) = 1`
`lim_(x->1^+) f(x) = lim_(h->0) (-2(-1+h)) = 1`
f (-1) = -2(-1) -1 = 1
इस प्रकार, `lim_(x->1^-) f (x) = lim_(x->1^+) f (x) = f (-1)`
= f, x = -1 पर संतत है।
x= 0
`lim_(x->0^-) f(x) = lim_(x->0^-)(-2x-1) = lim_(h->0)(-2(-h)-1) = -1`
`lim_(x->0^+) f(x) = -1`
साथ ही, f(0) = -1
इस प्रकार,`lim_(x->0^-) f(x) = lim_(x->0^+) f(x) = f(0)`
f, x = 0 पर संतत है।
इसके अलावा, f एक स्थिरांक है, जो x<-1 या x>0 होने पर संतत होता है।
∴ f सभी x ∈ R के लिए संतत है।
APPEARS IN
संबंधित प्रश्न
x = 3 पर फलन f(x) = 2x2 - 1 के सातत्य की जाँच कीजिए।
सिद्ध कीजिए कि फलन f(x) = xn, x = n, पर संतत है, जहाँ n एक धन पूर्णांक है।
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) = x - 5
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) `= 1/(x - 5), x ne 5`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(2x + 3, "यदि" x<=2),(2x - 3, "यदि" x > 2):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|+3, "यदि" x<= -3),(-2x, "यदि" -3 < x < 3),(6x + 2, "यदि" x >= 3):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|/x , "यदि" x != 0),(0, "यदि" x = 0):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x/|x|, "यदि" x<0),(-1, "यदि" x >= 0):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(x^3 - 3, "यदि" x <= 2),(x^2 + 1, "यदि" x > 2):}`
फलन f के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(3"," " यदि", 0 le "x" le 1),(4"," " यदि", 1 < "x" < 3),(5"," " यदि", 3 le "x" le 10):}`
फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(2"x""," " यदि", "x" < 0),(0"," " यदि", 0 le "x" le 1),(4"x" "," " यदि", "x" > 1):}`
फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(-2"," " यदि", "x" le -1),(2"x"","" यदि", -1 le "x" le 1),(2"," " यदि", "x" > 1):}`
a और b के उन मानों को ज्ञात कीजिए। जिनके लिए `f(x)= {(ax + 1, "यदि" x<= 3),(bx + 3, "यदि" x > 3):}` द्वारा परिभाषित फलन x = 3 पर संतत है।
`lambda` के किस मान के लिए `"f"("x") = {(lambda ("x"^2 - 2"x")"," " यदि" "x" le 0), (4 "x" + 1"," " यदि" "x" > 0):}` द्वारा परिभाषित फलन x = 0 पर संतत है। x = 1 पर इसके सांतत्य पर विचार कीजिए।
f के सभी असांतत्य के बिंदुओं को ज्ञात कीजिए, जहाँ `f (x) = {(sinx/x, "यदि" x<0),(x + 1, "यदि" x >= 0):}`
निर्धारित कीजिए कि फलन f, `"f"("x") = {("x"^2 "sin" 1/"x""," " यदि" "x" ne 0),(0"," " यदि" "x" = 0):}` द्वारा परिभाषित एक संतत फलन है।
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"("x") = {(("k cos x")/(pi - 2"x")"," " यदि" "x" ne pi/2),(3"," " यदि" "x" = pi/2):}` द्वारा परिभाषित फलन `"x" = pi/2` पर
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"(x) = {("kx" + 1"," " यदि" "x" le pi),("cos x"","" यदि" "x" > pi):}` द्वारा परिभाषित फलन `"x" = pi` पर
a तथा b के मानों को ज्ञात कीजिए ताकि `"f"(x) = {(5"," " यदि" x le 2),("a"x + "b""," " यदि" 2 < x < 10),(21"," " यदि" x ge 10):}` द्वारा परिभाषित फलन एक संतत फलन हो।
दर्शाइए कि f(x) - cos (x2) द्वारा परिभाषित फलन एक संतत फलन है।
दर्शाइए कि f(x) = |cos x| द्वारा परिभाषित फलन एक संतत फलन है।
यदि x = a (cost + t sin t) और y = a (sin t – tcost) है तो `(d^2y)/dx^2` ज्ञात कीजिए।