हिंदी

यदि x = a (cost + t sin t) और y = a (sin t – tcost) है तो d2ydx2 ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि x = a (cost + t sin t) और y = a (sin t – tcost) है तो `(d^2y)/dx^2` ज्ञात कीजिए।

योग

उत्तर

यहाँ x = a (cost + t sin t) y = a (sin t – tcost)

अब, x = a (cos t + t sin t),

t के सापेक्ष अवकलन करने पर,

`dx/dt = a (- sin t + t * cos t + sin t)`

= at cos t

तथा y = a (sin t - t cos t)

t के सापेक्ष अवकलन करने पर,

`dy/dx = a[cos t - {t (- sin t) + cos t}]`

= a {cos t + t sin t - cos t}

= at sin t

`therefore dy/dx = (dy//dt)/(dx//dt)`

`= (at sin t)/(at cos t)` = tan t

पुनः x के सापेक्ष अवकलन करने पर,

`(d^2y)/dx^2 = d/dx (dy/dx)`

`= d/dt (dy/dx) xx dt/dx`

`= d/dt (tan t) xx dt/dx`

`= sec^2 t xx 1/(at cos t)       ...[because  dx/dt = at  cos  t]`

`= 1/at sec^3 t`

∴ `(d^2y)/dx^2 = (sec^3 t)/(at), 0 <t <pi/2`

shaalaa.com
सांतत्य - संतत फलनों का बीजगणित
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य तथा अवकलनीयता - अध्याय 5 पर विविध प्रश्नावली [पृष्ठ २०८]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 5 सांतत्य तथा अवकलनीयता
अध्याय 5 पर विविध प्रश्नावली | Q 17. | पृष्ठ २०८

संबंधित प्रश्न

सिद्ध कीजिए कि फलन f(x) = 5x - 3, x = 0, x = - 3 तथा x = 5 पर संतत है।


निम्नलिखित फलन की सातत्य की जाँच कीजिए:

f(x) = x - 5


निम्नलिखित फलन की सातत्य की जाँच कीजिए:

f(x) `= (x^2 - 25)/(x + 5), x ne -5`


निम्नलिखित फलन की सातत्य की जाँच कीजिए:

f(x) = `abs (x - 5)`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(2x + 3, "यदि"  x<=2),(2x - 3, "यदि"  x > 2):}`


क्या `f (x) = {(x, "यदि"  x<=1),(5, "यदि"  x > 1):}` द्वारा परिभाषित फलन f, x = 0, x = 1 तथा x = 2 पर संतत है?


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f(x) = {(|x|/x , "यदि"  x != 0),(0, "यदि"  x = 0):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(x/|x|, "यदि"  x<0),(-1, "यदि"  x >= 0):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(x^10 - 1, "यदि"  x<=1),(x^2, "यदि"  x > 1):}`


a और b के उन मानों को ज्ञात कीजिए। जिनके लिए `f(x)= {(ax + 1, "यदि"  x<= 3),(bx + 3, "यदि"  x  > 3):}`  द्वारा परिभाषित फलन x = 3 पर संतत है।


निम्नलिखित फलन के सातत्य पर विचार कीजिए -

f(x) = sin x + cos x


निम्नलिखित फलन के सातत्य पर विचार कीजिए:

f(x) = sin x - cos x


निम्नलिखित फलन के सातत्य पर विचार कीजिए:

f(x) = sin x. cos x


cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।


निर्धारित कीजिए कि फलन f, `"f"("x") = {("x"^2 "sin" 1/"x""," " यदि"  "x" ne 0),(0"," " यदि"  "x" = 0):}`  द्वारा परिभाषित एक संतत फलन है।


f के सांतत्य की जाँच कीजिए, जहाँ f निम्नलिखित प्रकार से परिभाषित है:

`"f"("x") = {("sin x" - "cos x""," " यदि"  "x" ne 0),(-1"," " यदि"  "x" = 0):}`


k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:

`"f"("x") = {(("k cos x")/(pi - 2"x")"," " यदि"  "x" ne pi/2),(3","  " यदि"   "x" = pi/2):}` द्वारा परिभाषित फलन `"x" = pi/2` पर


k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:

`"f"(x) = {("kx"^2"," " यदि"  "x" le 2),(3"," " यदि"  "x" > 2):}` द्वारा परिभाषित फलन x = 2 पर


k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:

`"f"(x) = {("kx" + 1"," " यदि"  x le 5),(3x - 5"," " यदि"  x > 5):}` द्वारा परिभाषित फलन x = 5 पर


दर्शाइए कि f(x) - cos (x2) द्वारा परिभाषित फलन एक संतत फलन है।


दर्शाइए कि f(x) = |cos x| द्वारा परिभाषित फलन एक संतत फलन है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×