Advertisements
Advertisements
प्रश्न
निर्धारित कीजिए कि फलन f, `"f"("x") = {("x"^2 "sin" 1/"x""," " यदि" "x" ne 0),(0"," " यदि" "x" = 0):}` द्वारा परिभाषित एक संतत फलन है।
उत्तर
`"f"("x") = {("x"^2 "sin" 1/"x""," " यदि" "x" ne 0),(0"," " यदि" "x" = 0):}`
हमारे पास f(0) = 0 है,
`lim_(x->0^-) f (x) = lim_(h->0)(0 - h^2) sin 1/-h = h^2 sin (1/h)`
लेकिन, `sin 1/h ∈ [-1, 1]`
= `h^2 sin 1/h -> 0` क्योंकि h ->0.
`lim_(x->0^+) f (x) = lim_(h->0) (0 + h)^2 sin 1/h =h^2 sin 1/h = 0 `
= `lim_(x->0^-) f (x) = lim_(x->0^+) f (x) = f (0)`
= f, x = 0 पर संतत है।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि फलन f(x) = 5x - 3, x = 0, x = - 3 तथा x = 5 पर संतत है।
x = 3 पर फलन f(x) = 2x2 - 1 के सातत्य की जाँच कीजिए।
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) = x - 5
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) `= 1/(x - 5), x ne 5`
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) `= (x^2 - 25)/(x + 5), x ne -5`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(2x + 3, "यदि" x<=2),(2x - 3, "यदि" x > 2):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|+3, "यदि" x<= -3),(-2x, "यदि" -3 < x < 3),(6x + 2, "यदि" x >= 3):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|/x , "यदि" x != 0),(0, "यदि" x = 0):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x/|x|, "यदि" x<0),(-1, "यदि" x >= 0):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x+1, "यदि" x>=1),(x^2+1, "यदि" x < 1):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(x^3 - 3, "यदि" x <= 2),(x^2 + 1, "यदि" x > 2):}`
फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(2"x""," " यदि", "x" < 0),(0"," " यदि", 0 le "x" le 1),(4"x" "," " यदि", "x" > 1):}`
निम्नलिखित फलन के सातत्य पर विचार कीजिए:
f(x) = sin x. cos x
cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।
f के सभी असांतत्य के बिंदुओं को ज्ञात कीजिए, जहाँ `f (x) = {(sinx/x, "यदि" x<0),(x + 1, "यदि" x >= 0):}`
f के सांतत्य की जाँच कीजिए, जहाँ f निम्नलिखित प्रकार से परिभाषित है:
`"f"("x") = {("sin x" - "cos x""," " यदि" "x" ne 0),(-1"," " यदि" "x" = 0):}`
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"("x") = {(("k cos x")/(pi - 2"x")"," " यदि" "x" ne pi/2),(3"," " यदि" "x" = pi/2):}` द्वारा परिभाषित फलन `"x" = pi/2` पर
a तथा b के मानों को ज्ञात कीजिए ताकि `"f"(x) = {(5"," " यदि" x le 2),("a"x + "b""," " यदि" 2 < x < 10),(21"," " यदि" x ge 10):}` द्वारा परिभाषित फलन एक संतत फलन हो।
दर्शाइए कि f(x) = |cos x| द्वारा परिभाषित फलन एक संतत फलन है।
जाँचिए कि क्या sin |x| एक संतत फलन है।
f(x) = |x| - |x + 1| द्वारा परिभाषित फलन के सभी असांत्यता के बिंदुओं को ज्ञात कीजिए।
यदि `y = sin^-1 x + sin^-1 sqrt (1 - x^2), 0 <x <1` है तो `dy/dx` ज्ञात कीजिए।
यदि - 1 < x < 1 के लिए `xsqrt(1 + y) + y sqrt(1 + x) = 0` है तो सिद्ध कीजिए की `dy/dx = - 1/(1 + x)^2`.
यदि x = a (cost + t sin t) और y = a (sin t – tcost) है तो `(d^2y)/dx^2` ज्ञात कीजिए।