Advertisements
Advertisements
प्रश्न
यदि `y = sin^-1 x + sin^-1 sqrt (1 - x^2), 0 <x <1` है तो `dy/dx` ज्ञात कीजिए।
उत्तर १
∴ y = sin-1 x + sin-1 `sqrt(1 - x^2)`
x = sin θ रखने पर,
y = `theta + sin^-1 cos theta`
`= theta + sin^-1 [sin (pi/2 - theta)]`
`= theta + pi/2 - theta`
=`pi/2`
`therefore dy/dx = 0`
उत्तर २
यहाँ, `y = sin^-1 x + sin^-1 sqrt (1- x^2)`
माना, ` u = sin^-1 x "और" v = sin^-1 sqrt (1-x^2)`
`(du)/dx = 1/sqrt(1 - x^2)`
अब `v = sin^-1 sqrt(1 - x^2)`
x = cos θ
∴ `v = sin^-1 sqrt (1 - cos^2 theta) = sin^-1 sqrt (sin^2 theta)`
`= sin^-1 (sin theta) = theta = cos^-1 x`
∴`(dv)/dx = -1/sqrt(1 - x^2)`
`dy/dx = (du)/dx + (dv)/dx`
`= 1/ sqrt(1-x^2) + -1/ sqrt (1 - x^2) = 0`
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए कि फलन f(x) = xn, x = n, पर संतत है, जहाँ n एक धन पूर्णांक है।
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) `= 1/(x - 5), x ne 5`
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) `= (x^2 - 25)/(x + 5), x ne -5`
निम्नलिखित फलन की सातत्य की जाँच कीजिए:
f(x) = `abs (x - 5)`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|/x , "यदि" x != 0),(0, "यदि" x = 0):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x/|x|, "यदि" x<0),(-1, "यदि" x >= 0):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x+1, "यदि" x>=1),(x^2+1, "यदि" x < 1):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x^10 - 1, "यदि" x<=1),(x^2, "यदि" x > 1):}`
फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(-2"," " यदि", "x" le -1),(2"x"","" यदि", -1 le "x" le 1),(2"," " यदि", "x" > 1):}`
`lambda` के किस मान के लिए `"f"("x") = {(lambda ("x"^2 - 2"x")"," " यदि" "x" le 0), (4 "x" + 1"," " यदि" "x" > 0):}` द्वारा परिभाषित फलन x = 0 पर संतत है। x = 1 पर इसके सांतत्य पर विचार कीजिए।
दर्शाइए कि g(x) = x - [x] द्वारा परिभाषित फलन समस्त पूर्णांक बिंदुओं पर असंतत है। यहाँ [x] उस महत्तम पूर्णाक निरूपित करता है, जो x के बराबर या x से कम है।
निम्नलिखित फलन के सातत्य पर विचार कीजिए -
f(x) = sin x + cos x
निम्नलिखित फलन के सातत्य पर विचार कीजिए:
f(x) = sin x - cos x
निम्नलिखित फलन के सातत्य पर विचार कीजिए:
f(x) = sin x. cos x
cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।
निर्धारित कीजिए कि फलन f, `"f"("x") = {("x"^2 "sin" 1/"x""," " यदि" "x" ne 0),(0"," " यदि" "x" = 0):}` द्वारा परिभाषित एक संतत फलन है।
f के सांतत्य की जाँच कीजिए, जहाँ f निम्नलिखित प्रकार से परिभाषित है:
`"f"("x") = {("sin x" - "cos x""," " यदि" "x" ne 0),(-1"," " यदि" "x" = 0):}`
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"("x") = {(("k cos x")/(pi - 2"x")"," " यदि" "x" ne pi/2),(3"," " यदि" "x" = pi/2):}` द्वारा परिभाषित फलन `"x" = pi/2` पर
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"(x) = {("kx" + 1"," " यदि" x le 5),(3x - 5"," " यदि" x > 5):}` द्वारा परिभाषित फलन x = 5 पर
a तथा b के मानों को ज्ञात कीजिए ताकि `"f"(x) = {(5"," " यदि" x le 2),("a"x + "b""," " यदि" 2 < x < 10),(21"," " यदि" x ge 10):}` द्वारा परिभाषित फलन एक संतत फलन हो।
दर्शाइए कि f(x) - cos (x2) द्वारा परिभाषित फलन एक संतत फलन है।
दर्शाइए कि f(x) = |cos x| द्वारा परिभाषित फलन एक संतत फलन है।
जाँचिए कि क्या sin |x| एक संतत फलन है।
यदि - 1 < x < 1 के लिए `xsqrt(1 + y) + y sqrt(1 + x) = 0` है तो सिद्ध कीजिए की `dy/dx = - 1/(1 + x)^2`.