हिंदी

दर्शाइए कि g(x) = x - [x] द्वारा परिभाषित फलन समस्त पूर्णांक बिंदुओं पर असंतत है। यहाँ [x] उस महत्तम पूर्णाक निरूपित करता है, जो x के बराबर या x से कम है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दर्शाइए कि g(x) = x - [x] द्वारा परिभाषित फलन समस्त पूर्णांक बिंदुओं पर असंतत है। यहाँ [x] उस महत्तम पूर्णाक निरूपित करता है, जो x के बराबर या x से कम है।

योग

उत्तर १

g(x) = x - [x]

मानलेते है की n एक पूर्णांक बिंदु को निरूपित करता है:

यदि g(x), x = n पर संतत है, इसका तात्पर्य होगा:

g(n) = `lim_("x" -> "n"^+)  "g" ("x") = lim_("x" -> "n"^-)  "g"("x")`

= (n - n) = (n - n) = (n - (n - 1))

`=> 0 = 0 = 1`

जो सत्य नहीं हो सकता, अर्थात g(x) किसी भी पूर्णांक बिंदुक पर संतत नहीं है।

shaalaa.com

उत्तर २

माना, n ∈ I.

तब`lim_(x->n^-)[x] = n - 1`

∵[x] = n - 1 ∀ x ∈ [n - 1,n]

और g(n) = n - n = 0 ∵ [n] = n क्योंकि n ∈ I]

अब,

`lim_(x->n^-) g(x) = lim_(x->n^-) (x - [x]) = lim_(x->n^-) x - lim_(x->n^-)[x] = n - (n - 1) = 1`

and `lim_(x->n^+) g(x) = lim_(x->n^+)(x - [x]) = lim_(x->n^+)x - lim_(x->n^+)[x] = n - n = 0`

`lim_(x->n^-) g(x) ne lim_(x->n^+)g(x)`

अतः g(x) किसी भी पूर्णांक बिंदुक पर संतत नहीं है।

shaalaa.com
सांतत्य - संतत फलनों का बीजगणित
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सांतत्य तथा अवकलनीयता - प्रश्नावली 5.1 [पृष्ठ १७५]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
अध्याय 5 सांतत्य तथा अवकलनीयता
प्रश्नावली 5.1 | Q 19. | पृष्ठ १७५

संबंधित प्रश्न

निम्नलिखित फलन की सातत्य की जाँच कीजिए:

f(x) `= (x^2 - 25)/(x + 5), x ne -5`


निम्नलिखित फलन की सातत्य की जाँच कीजिए:

f(x) = `abs (x - 5)`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(2x + 3, "यदि"  x<=2),(2x - 3, "यदि"  x > 2):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f(x) = {(|x|+3, "यदि"  x<= -3),(-2x, "यदि"  -3 < x < 3),(6x + 2, "यदि"  x >= 3):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f(x) = {(|x|/x , "यदि"  x != 0),(0, "यदि"  x = 0):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(x/|x|, "यदि"  x<0),(-1, "यदि"  x >= 0):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f(x) = {(x^3 - 3, "यदि"  x <= 2),(x^2 + 1, "यदि"  x > 2):}`


f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:

`f (x) = {(x^10 - 1, "यदि"  x<=1),(x^2, "यदि"  x > 1):}`


क्या `f (x) = {(x+5, "यदि"  x<=1),(x - 5, "यदि"  x > 1):}` द्वारा परिभाषित फलन, एक संतत फलन है?


फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:

`"f"("x") = {(2"x""," " यदि", "x" < 0),(0"," " यदि", 0 le "x" le 1),(4"x" "," " यदि", "x" > 1):}`


निम्नलिखित फलन के सातत्य पर विचार कीजिए:

f(x) = sin x - cos x


निम्नलिखित फलन के सातत्य पर विचार कीजिए:

f(x) = sin x. cos x


cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।


k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:

`"f"("x") = {(("k cos x")/(pi - 2"x")"," " यदि"  "x" ne pi/2),(3","  " यदि"   "x" = pi/2):}` द्वारा परिभाषित फलन `"x" = pi/2` पर


a तथा b के मानों को ज्ञात कीजिए ताकि `"f"(x) = {(5"," " यदि"   x le 2),("a"x + "b""," " यदि"  2 < x < 10),(21"," " यदि"  x ge 10):}` द्वारा परिभाषित फलन एक संतत फलन हो।


दर्शाइए कि f(x) - cos (x2) द्वारा परिभाषित फलन एक संतत फलन है।


दर्शाइए कि f(x) = |cos x| द्वारा परिभाषित फलन एक संतत फलन है।


जाँचिए कि क्या sin |x| एक संतत फलन है।


यदि `y = sin^-1 x + sin^-1 sqrt (1 - x^2), 0 <x <1`  है तो `dy/dx` ज्ञात कीजिए।


यदि - 1 < x < 1 के लिए `xsqrt(1 + y) + y sqrt(1 + x) = 0` है तो सिद्ध कीजिए की `dy/dx = - 1/(1 + x)^2`.


यदि x = a (cost + t sin t) और y = a (sin t – tcost) है तो `(d^2y)/dx^2` ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×