Advertisements
Advertisements
प्रश्न
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|/x , "यदि" x != 0),(0, "यदि" x = 0):}`
उत्तर
`f(x) = abs x/x, "यदि" x ne 0` के बराबर नहीं है 0, यदि x = 0
`lim_(x -> 0^-) f(x) = lim_(x -> 0^-) abs x/x`
= `lim_(h -> 0) abs (0 - h)/(0 - h)`
= `lim_(h -> 0) h/-h = -1`
`h -> 0`
`lim_(x -> 0^+) f(x) = lim_(x -> 0^+) abs x/x`
= `lim_(h -> 0) abs (0 + h)/(0 + h)`
= `lim_(h -> 0) h/h = 1`
अत: x = 0 पर f संतत नहीं है।
APPEARS IN
संबंधित प्रश्न
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(2x + 3, "यदि" x<=2),(2x - 3, "यदि" x > 2):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(|x|+3, "यदि" x<= -3),(-2x, "यदि" -3 < x < 3),(6x + 2, "यदि" x >= 3):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f(x) = {(x^3 - 3, "यदि" x <= 2),(x^2 + 1, "यदि" x > 2):}`
f के असांतत्य के बिंदु को ज्ञात कीजिए, जबकि f निम्नलिखित प्रकार से परिभाषित है:
`f (x) = {(x^10 - 1, "यदि" x<=1),(x^2, "यदि" x > 1):}`
क्या `f (x) = {(x+5, "यदि" x<=1),(x - 5, "यदि" x > 1):}` द्वारा परिभाषित फलन, एक संतत फलन है?
फलन f, के सांतत्य पर विचार कीजिए, जहाँ f निम्नलिखित द्वारा परिभाषित है:
`"f"("x") = {(-2"," " यदि", "x" le -1),(2"x"","" यदि", -1 le "x" le 1),(2"," " यदि", "x" > 1):}`
a और b के उन मानों को ज्ञात कीजिए। जिनके लिए `f(x)= {(ax + 1, "यदि" x<= 3),(bx + 3, "यदि" x > 3):}` द्वारा परिभाषित फलन x = 3 पर संतत है।
दर्शाइए कि g(x) = x - [x] द्वारा परिभाषित फलन समस्त पूर्णांक बिंदुओं पर असंतत है। यहाँ [x] उस महत्तम पूर्णाक निरूपित करता है, जो x के बराबर या x से कम है।
निम्नलिखित फलन के सातत्य पर विचार कीजिए:
f(x) = sin x - cos x
निम्नलिखित फलन के सातत्य पर विचार कीजिए:
f(x) = sin x. cos x
cosine, cosecant, secant और cotangent फलनों के सांतत्य पर विचार कीजिए।
f के सभी असांतत्य के बिंदुओं को ज्ञात कीजिए, जहाँ `f (x) = {(sinx/x, "यदि" x<0),(x + 1, "यदि" x >= 0):}`
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"("x") = {(("k cos x")/(pi - 2"x")"," " यदि" "x" ne pi/2),(3"," " यदि" "x" = pi/2):}` द्वारा परिभाषित फलन `"x" = pi/2` पर
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"(x) = {("kx"^2"," " यदि" "x" le 2),(3"," " यदि" "x" > 2):}` द्वारा परिभाषित फलन x = 2 पर
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"(x) = {("kx" + 1"," " यदि" "x" le pi),("cos x"","" यदि" "x" > pi):}` द्वारा परिभाषित फलन `"x" = pi` पर
k के मानों को ज्ञात कीजिए ताकि प्रदत्त फलन निर्दिष्ट बिंदु पर संतत हो:
`"f"(x) = {("kx" + 1"," " यदि" x le 5),(3x - 5"," " यदि" x > 5):}` द्वारा परिभाषित फलन x = 5 पर
a तथा b के मानों को ज्ञात कीजिए ताकि `"f"(x) = {(5"," " यदि" x le 2),("a"x + "b""," " यदि" 2 < x < 10),(21"," " यदि" x ge 10):}` द्वारा परिभाषित फलन एक संतत फलन हो।
दर्शाइए कि f(x) - cos (x2) द्वारा परिभाषित फलन एक संतत फलन है।
जाँचिए कि क्या sin |x| एक संतत फलन है।
f(x) = |x| - |x + 1| द्वारा परिभाषित फलन के सभी असांत्यता के बिंदुओं को ज्ञात कीजिए।
यदि - 1 < x < 1 के लिए `xsqrt(1 + y) + y sqrt(1 + x) = 0` है तो सिद्ध कीजिए की `dy/dx = - 1/(1 + x)^2`.
यदि x = a (cost + t sin t) और y = a (sin t – tcost) है तो `(d^2y)/dx^2` ज्ञात कीजिए।