मराठी

On Decreasing the Radius of a Circle by 30%, Its Area is Decreased by - Mathematics

Advertisements
Advertisements

प्रश्न

On decreasing the radius of a circle by 30%, its area is decreased by

पर्याय

  • 30%

  • 60%

  • 45%

  • none of these

MCQ

उत्तर

None of these

Let r be the original radius.

Thus, we have:

Original area = πr2

Also,

New radius = 70% of r

`=(70/100xx""r")`

`= (7"r")/10`

New area `= pixx((7"r")/10)^2`

`= (49pi"r"^2)/100`

Decrease oin the area`=(pi"r"^2 = (49pi"r"^2)/100)`

`=(59pi"r"^2)/100`

Thus, we have;

Decrease in the area`=((59pi"r"^2)/100xx1/pi"r"^2xx100)%`

                                = 51%

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Area of Circle, Sector and Segment - Multiple Choice Questions [पृष्ठ ८४७]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 18 Area of Circle, Sector and Segment
Multiple Choice Questions | Q 6 | पृष्ठ ८४७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×