मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Repeat the Previous Exercise If the Angle Between Each Pair of Springs is 120° Initially. - Physics

Advertisements
Advertisements

प्रश्न

Repeat the previous exercise if the angle between each pair of springs is 120° initially.

बेरीज

उत्तर

As the particle is pushed against the spring C by the distance x, it experiences a force of magnitude kx.

If the angle between each pair of the springs is 120˚ then the net force applied by the springs A and B is given as,

\[\sqrt{\left( \frac{kx}{2} \right)^2 + \left( \frac{kx}{2} \right)^2 + 2\left( \frac{kx}{2} \right)\left( \frac{kx}{2} \right)  \cos  120^\circ}   = \frac{kx}{2}\]

Total resultant force \[\left( F \right)\] acting on mass m will be,

\[F = kx + \frac{kx}{2} = \frac{3kx}{2}                          \] 

\[ \therefore a = \frac{F}{m} = \frac{3kx}{2m}\] 

\[ \Rightarrow \frac{a}{x} = \frac{3k}{2m} =  \omega^2 \] 

\[ \Rightarrow \omega = \sqrt{\frac{3k}{2m}}\] 

\[ \therefore \text { Time  period },   T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{2m}{3k}}\]

shaalaa.com
Energy in Simple Harmonic Motion
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Simple Harmonics Motion - Exercise [पृष्ठ २५३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 12 Simple Harmonics Motion
Exercise | Q 20 | पृष्ठ २५३

संबंधित प्रश्‍न

A particle is in linear simple harmonic motion between two points, A and B, 10 cm apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is

(a) at the end A,

(b) at the end B,

(c) at the mid-point of AB going towards A,

(d) at 2 cm away from B going towards A,

(e) at 3 cm away from A going towards B, and

(f) at 4 cm away from B going towards A.


A particle executes simple harmonic motion with an amplitude of 10 cm. At what distance from the mean position are the kinetic and potential energies equal?


A particle having mass 10 g oscillates according to the equation x = (2.0 cm) sin [(100 s−1)t + π/6]. Find (a) the amplitude, the time period and the spring constant. (c) the position, the velocity and the acceleration at t = 0.


The equation of motion of a particle started at t = 0 is given by x = 5 sin (20t + π/3), where x is in centimetre and in second. When does the particle
(a) first come to rest
(b) first have zero acceleration
(c) first have maximum speed?


Consider a particle moving in simple harmonic motion according to the equation x = 2.0 cos (50 πt + tan−1 0.75) where x is in centimetre and t in second. The motion is started at t = 0. (a) When does the particle come to rest for the first time? (b) When does he acceleration have its maximum magnitude for the first time? (c) When does the particle come to rest for the second time ?


A block of mass 0.5 kg hanging from a vertical spring executes simple harmonic motion of amplitude 0.1 m and time period 0.314 s. Find the maximum force exerted by the spring on the block.


The spring shown in figure is unstretched when a man starts pulling on the cord. The mass of the block is M. If the man exerts a constant force F, find (a) the amplitude and the time period of the motion of the block, (b) the energy stored in the spring when the block passes through the equilibrium position and (c) the kinetic energy of the block at this position.


The springs shown in the figure are all unstretched in the beginning when a man starts pulling the block. The man exerts a constant force F on the block. Find the amplitude and the frequency of the motion of the block.


Consider the situation shown in figure . Show that if the blocks are displaced slightly in opposite direction and released, they will execute simple harmonic motion. Calculate the time period.


If a body is executing simple harmonic motion and its current displacements is `sqrt3/2` times the amplitude from its mean position, then the ratio between potential energy and kinetic energy is:


A body is executing simple harmonic motion with frequency ‘n’, the frequency of its potential energy is ______.


A body is performing S.H.M. Then its ______.

  1. average total energy per cycle is equal to its maximum kinetic energy.
  2. average kinetic energy per cycle is equal to half of its maximum kinetic energy.
  3. mean velocity over a complete cycle is equal to `2/π` times of its π maximum velocity. 
  4. root mean square velocity is times of its maximum velocity `1/sqrt(2)`.

Displacement versus time curve for a particle executing S.H.M. is shown in figure. Identify the points marked at which (i) velocity of the oscillator is zero, (ii) speed of the oscillator is maximum.


Find the displacement of a simple harmonic oscillator at which its P.E. is half of the maximum energy of the oscillator.


An object of mass 0.5 kg is executing a simple Harmonic motion. Its amplitude is 5 cm and the time period (T) is 0.2 s. What will be the potential energy of the object at an instant t = `T/4` s starting from the mean position? Assume that the initial phase of the oscillation is zero.


A particle undergoing simple harmonic motion has time dependent displacement given by x(t) = A sin`(pit)/90`. The ratio of kinetic to the potential energy of this particle at t = 210s will be ______.


The total energy of a particle, executing simple harmonic motion is ______.

where x is the displacement from the mean position, hence total energy is independent of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×