मराठी

TA and TB are tangents to a circle with centre O from an external point T. OT intersects the circle at point P. Prove that AP bisects the angle TAB. - Mathematics

Advertisements
Advertisements

प्रश्न

TA and TB are tangents to a circle with centre O from an external point T. OT intersects the circle at point P. Prove that AP bisects the angle TAB.

बेरीज

उत्तर


Join PB.

In ΔTAP and ΔTBP,

TA = TB   ...(Tangents segments from an external points are equal in length)

Also, ∠ATP = ∠BTP.  ...(Since OT is equally inclined with TA and TB)

TP = TP   ...(Common)

`=>` ΔTAP ≅ ΔTBP  ...(By SAS criterion of congruency)

`=>` ∠TAP = ∠TBP  ...(Corresponding parts of congruent triangles are equal)

But ∠TBP = ∠BAP  ...(Angles in alternate segments)

Therefore, ∠TAP = ∠BAP.

Hence, AP bisects ∠TAB.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Tangents and Intersecting Chords - Exercise 18 (C) [पृष्ठ २८६]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 18 Tangents and Intersecting Chords
Exercise 18 (C) | Q 27 | पृष्ठ २८६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×